Skip to main content


Fig. 4 | Malaria Journal

Fig. 4

From: Plasmodium falciparum: multifaceted resistance to artemisinins

Fig. 4

Synthetic model of Plasmodium quiescence metabolism. Quiescent P. falciparum parasites demonstrated an arrested glycolysis pathway leading to suspended production of ATP and phosphoenolpyruvate. Basal metabolism is maintained in quiescent parasites due to FASII metabolism in the apicoplast coupled with ATP production in the mitochondrion. Haloxifob, triclosan and atovaquone can disrupt these biochemical pathways [49, 95]. Green protein/enzyme with maintained expression in quiescent rings [49]. ACC acetyl-CoA carboxylase, ACO aconitase, BCKDH branched-chain keto acid dehydratase, coxii cytochrome c sub-unit II, CS citrate synthase, FabI enoyl-ACP reductase, FabZ β-hydroxyacyl-ACP dehydratase, FabG β-ketoacyl-ACP reductase, FabB/F β-ketoacyl-ACP synthase I/II, FabH β-ketoacyl-ACP synthase III, FabD malonyl-CoA:ACP transacylase, FASII fatty acid synthesis type II, FH fumarate hydratase, IDH isocitrate dehydrogenase, KDH α-ketoglutarate dehydrogenase, LDH lactate dehydrogenase, LipA lipoic acid synthase, LipB octanoyl-ACP protein transferase, MQO malate quinone oxidoreductase, ndh2 NADH-ubiquinone oxidoreductase II, PEP phosphoenolpyruvate, PEPCase PEP carboxylase, PEPCK PEP carboxykinase, PDH pyruvate dehydrogenase, PYK pyruvate kinase, SCS succinyl-CoA synthase, SDH succinate dehydrogenase, sdha flavoprotein subunit of succinate dehydrogenase, TCA Tri carboxylic acid, uqcr iron sulfur sub-unit of ubiquinol Cytochrome c reductase [49, 83, 95]

Back to article page