Skip to main content

Advertisement

Table 4 Assessment by principal component analyses of the association between eight plasma proteins and clinical malaria condition

From: Plasma levels of eight different mediators and their potential as biomarkers of various clinical malaria conditions in African children

  Factor 1 Factor 2 Eigenvalues Proportion (%) Cumulative  %
A
 Fractalkine 0.85545 −0.11784 3.3656 42.070 42.070
 MIG 0.73788 0.39620 1.1835 14.793 56.863
 Neopterin 0.70432 −0.43758 1.0940 13.676 70.539
 CD14 0.62246 −0.25274 0.7673 9.592 80.130
 sTREM-1 0.56695 0.61686 0.6733 8.417 88.547
 CD163 0.53826 0.23644 0.4064 5.080 93.627
 suPAR 0.10568 0.46070 0.3428 4.286 97.913
 PTX3 −0.76387 0.32950 0.1670 2.087 100.000
B
 suPAR 0.88028 0.03387 2.5280 31.600 31.600
 PTX3 0.76330 −0.15305 1.2911 16.139 47.738
 sTREM-1 0.74615 −0.13346 1.1018 13.773 61.511
 sCD14 0.34031 −0.46342 0.8155 10.193 71.705
 sCD163 0.32028 0.63252 0.7944 9.930 81.635
 MIG 0.06559 0.44941 0.6824 8.529 90.165
 Neopterin −0.43095 0.33440 0.4736 5.920 96.085
 Fractalkine −0.45310 −0.56576 0.3132 3.915 100.000
C
 Neopterin 0.93285 −0.17805 3.1726 39.658 39.658
 sTREM-1 0.76040 0.18134 1.2971 16.214 55.871
 suPAR 0.57427 0.57156 0.9591 11.988 67.860
 MIG/CXCL9 0.48202 0.36299 0.8547 10.684 78.544
 PTX3 −0.14160 0.69833 0.7624 9.530 88.074
 sCD163 −0.29783 0.47885 0.5191 6.489 94.563
 sCD14 −0.47978 0.17089 0.3726 4.658 99.221
 Fractalkine −0.90726 0.16699 0.0623 0.779 100.000
  1. The main associations found between biomarkers and clinical outcomes using rescaled variables for PCA analyses are indicated and sorted out for each clinical malaria condition
  2. The combination of Fractalkine, MIG/CXCL9 and neopterin was the best predictor of AM condition (A). The combination of suPAR, PTX3 and sTREM-1 was the best indicator of the UM condition (B) whereas that of neopterin, suPAR and Fractalkine was strongly predictive of SM–CM conditions (C)
  3. In each Table, two columns (Factor 1 and 2) indicate the correlation coefficients determined between each vector and the main component. Eight values are associated with vectors and the proportion (%) reflects how much of the variance is explained by each vector. The last column indicates the cumulative percentage of the variance explained by the different vectors sorted out by decreasing order of the corresponding eigenvalues