Anopheles strains used in the experiments
Two laboratory strains of A. arabiensis were used in this study:
-
SENN—colonized from Sennar in Sudan in 1980. This strain currently shows low-level permethrin resistance, but is fully susceptible to all other insecticides.
-
SENN DDT—intensively selected from SENN for resistance to DDT. SENN DDT currently shows resistance to DDT, malathion, deltamethrin, permethrin, and λ-cyhalothrin. Resistance in this strain is mediated by elevated cytochrome P450, GST and esterase activity. The strain is also fixed for the L1014F kdr mutation [23, 24]. Larvae were reared as per Hunt et al. [25]. Deviations from this procedure are detailed by experiment.
The effect of elevated temperature on larval development
To determine the effect of elevated temperature on development, groups of 25 first instar SENN and SENN DDT larvae (within 24 h after hatching) were placed into 1000 ml of distilled water. Each group was then incubated at one of three temperatures: the control group was kept at standard insectary conditions of 25 °C and 80 ± 5% relative humidity [25]; the first experimental group was raised in an insectary set at 30 ± 2 °C and 80 ± 5% relative humidity; the second experimental group was raised in an incubator set at 35 °C, with additional water bowls used to raise the humidity in the incubator to 80 ± 5%. A free supply of air into the incubator was ensured at all times. The 1000-ml water volume for each group was constantly maintained for all treatments for the duration of the experiment. The experiment was replicated from separate cohorts three times. For each cohort, five biological replicates were used for the control and temperature (30 and 35 °C) treatments. The time to pupation was monitored as a measure of development time.
The effect of elevated temperature on adult longevity
To determine the effect of elevated temperature on longevity, SENN and SENN DDT first instar larvae were used as described for the previous experiment, but only at the control temperature of 25 °C and the elevated temperature of 30 °C. For each strain, four bowls of 30 larvae each were incubated for each of three experimental replicates at both the control temperature and the experimental temperature of 30 °C. Adults that emerged were placed in cages with ad libitum access to sugar water, but were not allowed to mate or blood-feed.
The adults that emerged from rearing at the control temperature (25 °C, standard insectary conditions) were immediately split into two groups. The first group remained at 25 °C, while the second group was moved to the elevated temperature of 30 °C. Similarly, for the larvae that were reared at 30 °C, adults were separated upon emergence with half remaining at 30 °C, while the other half were moved to standard insectary conditions with a temperature of 25 °C. Each group then remained at the temperature that they were moved to for the duration of the experiment. This means that a 25 °C reared group spent the experiment at either 25 or 30 °C, and a 30 °C reared group spent the experiment at either 25 or 30 °C. Adult longevity was monitored as a function of survival daily, with cadavers removed on the day of death. The 10% sucrose solution offered to each cohort was refreshed on a daily basis.
The effect of elevated larval-rearing temperature on the subsequent expression of adult insecticide resistance phenotypes
To determine the effect of elevated larval-rearing temperatures on subsequent adult insecticide resistance phenotype, SENN DDT larvae were incubated at 30 °C, with control larvae incubated at 25 °C, starting within 24 h of hatching. Equal numbers of larvae were kept in 1000 ml of distilled water and were fed an equal amount of larval food three times daily. Upon emergence, adults from the control and treatment cohorts were collected and kept at 25 °C with ad libitum access to 10% sucrose, but without any access to blood until they were 3 days old. At the age of 3 days the treatment cohorts were exposed to either 5% malathion (♂: n = 367; ♀: n = 450) or 0.05% deltamethrin (♂: n = 380; ♀: n = 435) using the standard WHO insecticide susceptibility procedure [26]. Similarly, control (unexposed to elevated temperatures) adult male and female mosquitoes were exposed to malathion (♂: n = 342; ♀: n = 444) and deltamethrin (♂: n = 464; ♀: n = 582). This experiment was replicated three times from three separate cohorts. Mortality was scored 24 h post exposure. A control cohort exposed to untreated paper only constituted a handling control, while a completely unexposed group constituted an environmental control. All handling and environmental controls were drawn from the same populations that were being exposed to the insecticides, i.e., when exposing adults emerging from larvae reared at elevated temperatures, their accompanying handling and environmental controls would come from the same cohort of adults. Similarly, when exposing adults with no exposure to elevated temperatures, these adults would constitute the handling and environmental controls.
The effect of short-term heat shock on the expression of the adult insecticide resistance phenotypes
Mosquitoes may be exposed to short-term heat shock during the day, or during a blood meal. To determine the effect of a short-term heat shock on the insecticide resistance phenotype of SENN DDT, larvae were reared under standard insectary conditions, and then the adults were exposed to a short-term heat shock at 3 days of age. For the first treatment, a mixture of 3-day old adult males and females were exposed to a heat shock of 37 °C for 3 h. During this time they were not allowed access to sugar. Immediately after the shock period they were allowed to recover for an hour with access to sugar. The heat-shocked adults were then exposed to either 5% malathion (♂: n = 394; ♀: n = 489) or 0.05% deltamethrin (♂: n = 349; ♀: n = 408) using the standard WHO insecticide susceptibility procedure [26]. A second experimental SENN DDT group was exposed to the sub-lethal heat-shock temperature of 39 °C for 1 h, before exposures to malathion (♂: n = 412; ♀: n = 423) or deltamethrin (♂: n = 370; ♀: n = 412). The mortalities of the heat-exposed adults were compared to adults not exposed to elevated temperature [malathion: (♂: n = 425; ♀: n = 473); deltamethrin (♂: n = 395; ♀: n = 412)]. A control cohort exposed to untreated paper only constituted a handling control, while a completely unexposed group constituted an environmental control. All handling and environmental controls were drawn from the same populations that were being exposed to the insecticides, i.e., when exposing heat-shocked adults, their accompanying handling and environmental controls would come from the same cohort of adults. Similarly, when exposing adults with no exposure to elevated temperatures, these adults would constitute the handling and environmental controls.
The lasting effects of short-term heat shock on the expression of the adult insecticide resistance phenotypes
A set of experiments were conducted to determine whether the effects of short-term heat shock changed with time. For these experiments, only the pyrethroids deltamethrin and λ-cyhalothrin were used, and only adult females were assayed. A 3-day old, non-blood-fed cohort of SENN DDT, reared at standard insectary temperature, was exposed to either 37 °C for 3 h or 39 °C for 1 h. After a 1-h recovery period, standard WHO bioassays using 0.05% deltamethrin were performed every hour from 2 to 7 h post shock for both heat shock temperature cohorts (37 and 39 °C): 37 °C control, n = 320; 2 h: n = 353; 3 h: n = 343; 4 h: n = 361; 5 h: n = 320; 6 h: n = 317; 7 h: n = 309; 39 °C control, n = 330; 2 h: n = 362; 3 h: n = 370; 4 h: n = 351; 5 h: n = 343; 6 h: n = 330; 7 h: n = 321. The exposed control group was constituted of a group of SENN DDT from the same batch of adults that had not been exposed to a heat shock. Each experiment was replicated three times using three different cohorts. As deltamethrin resistance expression was affected by heat shock temperature (as demonstrated in Fig. 4A), another pyrethroid, 0.05% λ-cyhalothrin was also assayed after a 3-h 37 °C shock with a 1-h recovery period and 1-h 39 °C exposure followed by a 1-h recovery period (37 °C control: n = 220; 2 h: n = 253; 3 h: n = 249) (39 °C control: n = 230; 2 h: n = 242; 3 h: n = 277).
To ensure that sugar deprivation did not affect the results, another control group not exposed to a heat shock but deprived of sugar for the same period of time as their heat-shocked counterparts was used. Therefore, control exposures as well as unexposed controls included groups of individuals that were not exposed to elevated temperatures (n = 111), but half were allowed sugar for the duration of their exposure period (n = 117), and the other half were deprived of sugar in the same manner as the heat-exposed groups (n = 139).
The effect of short-term heat shock on insecticide susceptibility in an insecticide susceptible strain
The effect of short-term heat shock on the insecticide susceptibility phenotype of the SENN strain was examined using 3-day old non-blood-fed SENN adults that were exposed to either a 3-h 37 °C heat shock or a 1-h 39 °C heat shock. After a recovery period of 1 h, ten replicates of 20–25 females each were exposed to either 0.75% permethrin (n = 523), 0.05% deltamethrin (n = 473) or 0.05% λ-cyhalothrin (n = 492) using the standard WHO susceptibility methods [26]. Non-heat-shocked individuals were exposed to the same insecticide treatments concurrently. Individuals from the heat-shocked and non-heat-shocked groups were exposed to untreated papers, and this served as a handling control. Individuals from the heat-shocked and non-heated-shocked groups that were not exposed to any paper (treated or untreated) served as environmental controls.
All short-term heat shock treatments were performed by exposing the adults to the required temperature in an incubator in which the humidity had been raised to ±80% humidity by the addition of a water source. All insecticide exposures were performed at 25 °C as per standard WHO bioassay conditions [26].
The effects of elevated temperatures on detoxification enzyme activity
As heat shock exerted the strongest effect on pyrethroid resistance expression, the effect of temperature on cytochrome P450 activity and general esterases was examined as these enzymes are mediators of pyrethroid resistance [27] and are not associated with the kdr mutation.
Two temperature assays were performed. Standard haem peroxidase and general esterase activity assays were performed on 96 male and 96 female SENN DDT adults [28, 29]. For each individual a duplicate reaction plate was prepared. Once all of the reagents were added, the control plate was allowed to incubate at 25 °C (control reaction) while the experimental reaction was allowed to incubate at 30 °C. After the requisite incubation periods the amount of product formed was determined by measuring the absorbance at 650 nm for the haem peroxidase assay and 570 nm for the esterase assay. This experiment was replicated three times, with adults for each replicate being drawn from a new cohort, i.e., siblings from a new egg batch each time.
The second experiment was designed to determine whether adult SENN DDT had altered cytochrome P450 activity after heat shock. For this experiment, 96 SENN DDT individuals (48 males and 48 females), were drawn from replicates that had been exposed to 39 °C for 1 h, but without any exposure to insecticides. Adults not exposed to heat shock constituted the control group. As for the previous experiments, the heat-shocked group was not allowed access to sugar for their period of heat shock. At the same time, the control group was also deprived of sugar. Forty-eight adults of each gender were drawn from the shocked and control groups at 1 h intervals after heat shock, up to the age of 7 h. These individuals were cold-killed and immediately stored at −70 °C, after which they were processed within a week for haem peroxidase and esterase activity as described above.
The role of inducible heat shock proteins in the insecticide resistance phenotypes
To determine whether heat shock proteins (HSPs) played a role in the effect of elevated temperatures on the expression of the insecticide resistance phenotype, an HSP synergist assay was performed. The flavinoid quercetin was successfully used as a dietary synergist in Drosophila melanogaster [30], so a similar assay, using sugar as a delivery mechanism, was developed based on those methods [30]. Five cages of 3-day old SENN DDT adults were prepared using equal numbers of adults (150 males + 150 females) in each. Two of the cages then had their sugar removed and were exposed to a 3-h, 37 °C heat shock. Three cages remained at 25 °C: one had the sugar removed for the 3-h period; the second was supplied with a 10% sucrose solution supplemented with 25 mM quercetin; and the third had full access to sugar solution. The experiment was replicated in triplicate.
After the 3-h heat shock, the heat-stressed mosquitoes were immediately returned to 25 °C and allowed to recover for 2 h with either plain sucrose solution or quercetin-supplemented sucrose. The cage deprived of sugar at room temperature was split into two groups, one of which was supplied with sucrose solution and the other supplied with quercetin-supplemented sucrose. After recovery, the sucrose/quercetin-treated and sucrose-treated individuals were exposed to either 0.05% deltamethrin (treated: ♂: n = 373; ♀: n = 417; control ♂: n = 389; ♀: n = 397) or 0.05% malathion (treated: ♂: n = 354; ♀: n = 423; control ♂: n = 409; ♀: n = 417) using the standard WHO bioassay method [26].
Four controls that were unexposed to insecticide were used for this experiment: a standard environmental control, a control to ensure that quercetin supplementation after starvation did not affect mortality (no heat − sugar + quercetin, n = 153), a control to ensure that quercetin supplementation alone did not elicit mortality (no heat + quercetin, n = 161), and a control to ensure that the 3-h period without sugar did not elicit mortality (no heat − sugar, n = 157).
Data analysis
All data analysis was performed using Statistix 8 (Talahassee, FL, USA). All analyses were performed at 95% confidence. Means were compared using either a two-sample t test or a one-way analysis of variance (ANOVA) with a Tukey HSD as a post hoc test. Longevity was assessed using a Kaplan–Meier estimator, with a Log-rank test used as a measure of significance.