Volume 10 Supplement 1

Natural products for the control of malaria

Open Access

Analysis of additivity and synergism in the anti-plasmodial effect of purified compounds from plant extracts

Malaria Journal201110(Suppl 1):S5

https://doi.org/10.1186/1475-2875-10-S1-S5

Published: 15 March 2011

Abstract

In the search for antimalarials from ethnobotanical origin, plant extracts are chemically fractionated and biological tests guide the isolation of pure active compounds. To establish the responsibility of isolated active compound(s) to the whole antiplasmodial activity of a crude extract, the literature in this field was scanned and results were analysed quantitatively to find the contribution of the pure compound to the activity of the whole extract. It was found that, generally, the activity of isolated molecules could not account on their own for the activity of the crude extract. It is suggested that future research should take into account the “drugs beside the drug”, looking for those products (otherwise discarded along the fractionation process) able to boost the activity of isolated active compounds.

Introduction

In the search for anti-malarial activity of plants traditionally used against fevers, collected plants are first submitted to an extraction process with polar or apolar solvents. Ideally, the extracts are then tested against erythrocytic stages of Plasmodium falciparum in vitro to validate anti-plasmodial activity. Classically, when biological tests identify significant activity, crude extracts are submitted to a bioguided fractionation procedure, aiming to isolate the active compound(s). For that purpose, several sequential extractions with solvents of diverse polarities are performed, and purified fractions are submitted to anti-plasmodial tests and to chemical identification. Frequently, many promising extracts are discarded because the anti-plasmodial activity disappears along the fractionation process. The failure to isolate active constituents from active extracts may be due to the lability/instability of the active compounds that are degraded during the extraction process. Sometimes, the loss of activity is due to the fact that the compounds display their activity only when they interact in the crude extract. Such compounds will be lost for further development unless their interactions can be examined. In order to evaluate such interactions, mostly synergistic, it is necessary to know the inhibitory activity of the crude extract and the purified fractions (i.e., their IC50 values) and the yields of extraction of the purified compounds to allow calculation of their absolute quantitative prevalence in the extract. Unfortunately, in most cases, when plants are extracted and fractionated, the activity of the crude extract is not determined and the yields are not reported or not determined altogether. This is the case of hundreds of thousands of purified fractions of natural extracts that have been evaluated by cell-based inhibition tests.

To determine the quantitative contribution of the pure compounds to the activity of a crude extract, data from the literature were compiled selecting those publications in which the activities of the crude extracts and of the purified compounds (and their yields) were reported. To calculate the contribution of the pure active compound to the activity of the extract, the respective IC50 values and the yield of the purified compound are used. Data are shown in table 1.
Table 1

Compilation of data from the literature on the anti-plasmodial effects of plant extracts and their fractionated active compounds. CS and CR are chloroquine-sensitive and –resistant strains respectively.

Plant Species

Family

Parasite strain

Extract IC50 μg/ml

Most active compounds*

Compounds IC50 μg/ml

Yield %

% of active comp of extract IC50

Contribution of active compound to extract inhib %

ref #

Alstonia macrophylla Wall.

Apocynaceae

Pf K1 CR

5,7

Macrocarpamine

0,27

0,95

0,05

33,4

1

Alstonia macrophylla Wall.

Apocynaceae

Pf K1 CR

5,7

Villalstonine

0,17

0,6

0,03

31,1

2

Artemisia indica Willd

Asteraceae

Pf K1 CR

6,6

Exigua flavanones

4,6

0,15

0,01

0,4

3

Brucea javanica L. (Merr.)

Simaroubaceae

Pf K1 CR

0,5

Brucein

0,005

0,002

0,00001

0,4

4

Cryptolepis sanguinolenta (Lindl.)

Apocynaceae

Pf K1 CR

5,41

Cryptolepine

0,054

0,04

0,002

7,7

5

Diospyros sanza-minika A. Chevalier

Ebenaceae

Pf K1 CR

0,8

4-O-(3′-methylgalloyl) norbergenin

0,6

1,2

0,01

3,1

6

Erythrina fusca Lour.

Fabaceae

Pf K1 CR

7,5

Citflavanone

5

0,1

0,01

0,4

7

Erythrina fusca Lour.

Fabaceae

Pf K1 CR

7,5

Lonchocarpol

1,6

0,2

0,02

1,9

7

Erythrina fusca Lour.

Fabaceae

Pf K1 CR

7,5

8-Prenyldaidzein

3,9

0,0006

0,00005

0,002

7

Garcinia cowa L.

Clusiaceae

Pf T9/94CS

5

7-O-Methylgarcinone

2,5

0,01

0,00030

0,02

8

Garcinia cowa L.

Clusiaceae

Pf T9/94CS

5

Cowanin

3

0,2

0,01

0,7

8

Garcinia cowa L.

Clusiaceae

Pf T9/94CS

5

Cowanol

1,6

0,5

0,03

3,1

8

Garcinia cowa L.

Clusiaceae

Pf T9/94CS

5

Vowaxanthone

1,5

0,4

0,02

2,6

8

Garcinia cowa L.

Clusiaceae

Pf T9/94CS

5

b-Mangostin

3

0,04

0,002

0,1

8

Geissospermum sericeum Miers

Apocynaceae

Pf K1 CR

1,78

Flavopereirine

2,84

0,04

0,0008

0,06

9

Gomphostemma niveum Hook. f.

Lamiaceae

Pf MR-C02 CS

9,7

Gomphostenin

38,2

0,5

0,05

0,3

10

Gomphostemma niveum Hook. f.

Lamiaceae

Pf MR-C02 CS

3,4

Gomphostenin-A

3,4

24

0,83

39

10

Guiera senegalensis J.F. Gmel.

Combretaceae

Pf W2 CR

4,45

Harman (b-carboline)

3,29

0,1

0,00445

0,3

11

Holostylis reniformis Duch.

Rubiaceae

Pf BHz26/86 CR

0,7

Lignan

0,12

0,4

0,003

4,6

12

Holostylis reniformis Duch.

Rubiaceae

Pf BHz CR

0,7

Lignan

0,12

4,5

0,03

42

12

Nauclea orientalis L.

Rubiaceae

Pf D6 CS

3

Oleanolic acid

4,6

0,07

0,002

0,08

13

Phyllanthus niruri L.

Euphorbiaceae

Pf CS

1,3

Terpenes

1,3

0,1

0,002

0,3

14

Piptadenia pervillei Vatke (Entada pervillei Vatke (R.Vig.)

Fabaceae

Pf MCF29

3,7

Catechin derivatives

0,4

0,03

0,001

0,6

15

Piptadenia pervillei Vatke (Entada pervillei Vatke (R.Vig.)

Fabaceae

Pf FcM29 CR

3,7

Catechin derivatives

0,3

0,1

0,004

2,4

15

Pleiocarpa mutica Benth.

Apocynaceae

Pf K1 CR

16,7

Pleiomutinine

3,2

0,05

0,008

0,5

16

Polyalthia debilis (Piere) Finet & ganep

Annonaceae

Pf K1 CR

1,35

Bis-dehydroaporphine

4,1

0,16

0,002

0,1

17

Pothomorphe peltata L.

Piperaceae

Pf K1 CR

3,7

4-Nerolidylcatechol

0,21

5,7

0,21

100

18

Quassia amara L.

Simaroubaceae

Pf W2 CR

8,9

Simalikalactone D

0,005

0,001

0,0001

3,5

19

Rhaphidophora decursiva Schott

Araceae

Pf W2 CR

6,8

Polysyphorin

0,37

0,00004

0,000003

0,001

20

Rourea minor (Gaertn.) Alston

Connaraceae

Pf W2 CR

2

Rourinoside (glycoside)

1,2

4

0,08

12,5

21

Stephania pierrei Diels

Menispermaceae

Pf W2 CR

3

Asimilobine

0,4

0,3

0,008

3,7

22

Strychnos icaja Baillon

Loganiaceae

Pf W2 CR

0,3

18-hydroxyisosungucine

0,09

0,03

0,0001

0,2

23

Tapirira guianensis Aubl.

Anacardiaceae

Pf F32 CR

18

Cyclic alkyl polyol derivatives

4,7

2,7

0,49

18,9

24

Tephrosia elata Deflers

Fabaceae

Pf D6 CS

8,4

Elatadihydrochalcone

2,8

0,2

0,02

1,1

25

Tephrosia elata Deflers

Fabaceae

Pf D6 CS

8,4

Obovatin

4,9

0,05

0,004

0,2

25

Tephrosia elata Deflers

Fabaceae

Pf D6 CS

8,4

Obovatin methyl ether

3,8

0,01

0,001

0,03

25

Tephrosia elata Deflers

Fabaceae

Pf D6 CS

8,4

Deguelin

6,3

0,01

0,001

0,02

25

Teucrium ramosissimum Desfontaines

Lamiaceae

Pf FCB1

2,7

Homalomenol

1,2

0,04

0,001

0,2

26

Tithonia diversifolia (Hemsl.) A. Gray

Asteraceae

Pf FCA20 Ghana CS

0,75

Tagitinin (toxic)

0,33

2,7

0,02

11,6

27

Toddalia asiatica (L.) Lam.

Rutaceae

Pf K39 CS

22

Coumarin

16,2

2,0

0,44

5,3

28

Vernonia brasiliana L.

Asteraceae

Pf BH2 CR

50

Lupeol

25

0,4

0,22

1,7

29

Vernoniopsis caudata (Drake) Humbert

Asteraceae

Pf FCB1 CR

1,6

Helenalin-[2-(1-hydroxyethyl)acrylate]

0,37

0,1

0,002

0,9

30

Vernoniopsis caudata (Drake) Humbert

Asteraceae

Pf FCB1 CR

1,6

Helenalin-[(2-hydroxyethyl-3-methyl)acrylate]

0,07

0,01

0,0002

0,5

30

Vernoniopsis caudata (Drake) Humbert

Asteraceae

Pf FCB1 CR

1,6

11R,13-dihydrohelenalin-[2-(1-hydroxyethyl)acrylate]

0,15

0,02

0,0003

0,4

30

Viola verecunda A. Gray

Violaceae

Pf FCB1 CR

25

Epioleanolic acid

0,18

0,03

0,01

7

31

Zanthoxylum rhoifolium Lam.

Rutaceae

Pf FCB1 CR

10

Nitidine

1,8

6,00

0,6

50

32

Zhumeria majdae Rech.f. & Wendelbo

Lamiaceae

Pf W2 CR

7,5

12,16-dideoxy aegyptinone B

1,4

0,6

0,05

6,2

33

The equation describing the relationship between concentration and IC50 is:

f=max-(max-min)/(1+x/EC50)slope where “f” is the inhibitory effect. The EC50 is the IC50 of the isolated compound and “x” is the yield-dependent calculated concentration of the compound at the IC50 of the extract. For the simplest case, the values are set such that max=100 and max-min=100 and slope=1. The calculated partial effect of various compounds appears in the column captioned “% of active compound at extract IC50”.

Taking for example the case of the crude extract of Alstonia macrophylla and one of the most active compounds, macrocarpamine: one obtains a yield for macrocarpamine of 0.95 % and it is straightforward to calculate that it is present in the extract at 0.054 mg at the IC50 of the extract. Using the above equation one gets f=16.7. Thus, the active compound contributes 16.7/50 of the overall effect or 33.4 %. Another active compound, villalstonine, contributes 31.1 % to the activity of the crude extract. Given the fact that there are other active compounds in the extract, it is possible to suggest that the effects of macrocarpamine and villalstonine are not synergized in the crude extract and that their effects are additive. In such cases it can be concluded that very few active compounds account for the activity of the crude extract.

However, in the case of Garcinia cowa and 7-0-methylgarcinone, 0.0003 mg of the compound was present in the extract at the IC50 of the extract. The calculated f~0 and the compound contributes only 0.02 % to the anti-plasmodial activity of the crude extract. Since for all other purified compounds (cowanin, cowanol, cowaxanthone and b-mangostin) the contributions are ≤ 3.0 %, one is inclined to suggest that a strong synergism must occur between the components. Alternatively and quite unlikely, the extraction procedure destroys all the active compounds. In the extreme case of Pothomorphe peltata all the activity of the extract is accounted for by the activity of 4-nerolidylcatechol.

Inspection of the values that appear in the column captioned “% of active compound at extract IC50”, reveal that all cases can be subdivided in two groups. In one, the contribution of active compound to extract inhibition is ≥ ~20 %, while in the second the values center around ~1 % or significantly lower. Thus, in the second group considerable synergism between active compounds must exist in order to account for the activity of the extract, or the extraction procedure (quite unlikely) destroys the activity of all compounds.

Among the hundreds of articles describing the anti-plasmodial activity of plant extracts (1,031 articles were retrieved from PubMed for the last 10 years), only very few included the activity of the whole extract and of the pure compounds and their respective yields of extraction. Nevertheless it is striking that for 90% of the plants compiled in Additional file 1 the anti-malarial activity of the purified compounds cannot account quantitatively with that of the crude extract. If indeed this observation reflects the reality of anti-malarial properties of plant extracts, may be research should be focused on the “drug beside the drug”, looking for structures perhaps not exciting in the chemical point of view but that can revolutionize the treatment of malaria. Another natural consequence of this analysis is that evolution has provided not only bioactive metabolites that plants use to fight their foes, but has also mixed them in a very auspicious combination of compounds, which in some cases also work well in mammals. To achieve a similar combination even by systematic bioguided mixing is a very tedious, lengthy and expensive procedure. Why not learn from nature and optimize the use of plant extracts?

Declarations

Acknowledgements

Eric Deharo gratefully acknowledge the financial support of the Institut de Recherche pour le Développement. Publication charges for this article have been paid by the Institut de Recherche pour le Développement (IRD).

This article has been published as part of Malaria Journal Volume 10 Supplement 1, 2011: Natural products for the control of malaria. The full contents of the supplement are available online at http://www.malariajournal.com/supplements/10/S1.

Authors’ Affiliations

(1)
Laboratoire de Pharmacochimie des Substances Naturelles et Pharmacophores Redox, UMR 152, UPS, Université de Toulouse
(2)
Institut de Recherche pour le Développement, UMR 152, Mission IRD casilla
(3)
Department of Biological Chemistry, Institut of Life Sciences, The Hebrew University of Jerusalem

References

  1. Keawpradub N, Kirby GC, Steele JC, Houghton PJ: Antiplasmodial activity of extracts and alkaloids of three Alstonia species from Thailand. Planta Med. 1999, 65: 690-694. 10.1055/s-1999-14043.View ArticlePubMedGoogle Scholar
  2. Wright CW, Allen D, Phillipson JD, Kirby GC, Warhurst DC, Massiot G, Le Men-Olivier L: Alstonia species: are they effective in malaria treatment?. J Ethnopharmacol. 1993, 40: 41-45. 10.1016/0378-8741(93)90087-L.View ArticlePubMedGoogle Scholar
  3. Chanphen R, Thebtaranonth Y, Wanauppathamkul S, Yuthavong Y: Antimalarial principles from Artemisia indica. J Nat Prod. 1998, 61: 1146-1147. 10.1021/np980041x.View ArticlePubMedGoogle Scholar
  4. O'Neill MJ, Bray DH, Boardman P, Chan KL, Phillipson JD, Warhurst DC, Peters W: Plants as sources of antimalarial drugs, Part 4: Activity of Brucea javanica fruits against chloroquine-resistant Plasmodium falciparum in vitro and against Plasmodium berghei in vivo. J Nat Prod. 1987, 50: 41-48. 10.1021/np50049a007.View ArticlePubMedGoogle Scholar
  5. Paulo A, Gomes ET, Steele J, Warhurst DC, Houghton PJ: Antiplasmodial activity of Cryptolepis sanguinolenta alkaloids from leaves and roots. Planta Med. 2000, 66: 30-34. 10.1055/s-2000-11106.View ArticlePubMedGoogle Scholar
  6. Tangmouo JG, Ho R, Matheeussen A, Lannang AM, Komguem J, Messi BB, Maes L, Hostettmann K: Antimalarial activity of extract and norbergenin derivatives from the stem bark of Diospyros sanza-minika A. Chevalier (Ebenaceae). Phytother Res. 2010, 24: 1676-1679. 10.1002/ptr.3192.View ArticlePubMedGoogle Scholar
  7. Khaomek P, Ichino C, Ishiyama A, Sekiguchi H, Namatame M, Ruangrungsi N, Saifah E, Kiyohara H, Otoguro K, Omura S, Yamada H: In vitro antimalarial activity of prenylated flavonoids from Erythrina fusca. J Nat Med. 2008, 62: 217-220. 10.1007/s11418-007-0214-z.View ArticlePubMedGoogle Scholar
  8. Likhitwitayawuid K, Phadungcharoen T, Krungkrai J: Antimalarial xanthones from Garcinia cowa. Planta Med. 1998, 64: 70-72. 10.1055/s-2006-957370.View ArticlePubMedGoogle Scholar
  9. Steele JC, Veitch NC, Kite GC, Simmonds MS, Warhurst DC: Indole and beta-carboline alkaloids from Geissospermum sericeum. J Nat Prod. 2002, 65: 85-88. 10.1021/np0101705.View ArticlePubMedGoogle Scholar
  10. Sathe M, Kaushik MP: Gomphostenins: two new antimalarial compounds from the leaves of Gomphostemma niveum. Bioorg Med Chem Lett. 2010, 20: 1312-1314. 10.1016/j.bmcl.2009.02.120.View ArticlePubMedGoogle Scholar
  11. Fiot J, Sanon S, Azas N, Mahiou V, Jansen O, Angenot L, Balansard G, Ollivier E: Phytochemical and pharmacological study of roots and leaves of Guiera senegalensis J.F. Gmel (Combretaceae). J Ethnopharmacol. 2006, 106: 173-178. 10.1016/j.jep.2005.12.030.View ArticlePubMedGoogle Scholar
  12. de Andrade-Neto VF, da Silva T, Lopes LM, do Rosário VE, de Pilla Varotti F, Krettli AU: Antiplasmodial activity of aryltetralone lignans from Holostylis reniformis. Antimicrob Agents Chemother. 2007, 51: 2346-2350. 10.1128/AAC.01344-06.PubMed CentralView ArticlePubMedGoogle Scholar
  13. He ZD, Ma CY, Zhang HJ, Tan GT, Tamez P, Sydara K, Bouamanivong S, Southavong B, Soejarto DD, Pezzuto JM, Fong HH: Antimalarial constituents from Nauclea orientalis (L.) L. Chem. Biodivers. 2005, 2: 1378-1386. 10.1002/cbdv.200590110.View ArticlePubMedGoogle Scholar
  14. Cimanga RK, Tona L, Luyindula N, Mesia K, Lusakibanza M, Musuamba CT, Apers S, De Bruyne T, Van Miert S, Hermans N, Totté J, Pieters L, Vlietinck AJ: In vitro antiplasmodial activity of callus culture extracts and fractions from fresh apical stems of Phyllanthus niruri L. (Euphorbiaceae): part 2. J Ethnopharmacol. 2004, 95: 399-404. 10.1016/j.jep.2004.08.014.View ArticlePubMedGoogle Scholar
  15. Ramanandraibe V, Grellier P, Martin MT, Deville A, Joyeau R, Ramanitrahasimbola D, Mouray E, Rasoanaivo P, Mambu L: Antiplasmodial phenolic compounds from Piptadenia pervillei. Planta Med. 2008, 74: 417-421. 10.1055/s-2008-1034328.View ArticlePubMedGoogle Scholar
  16. Addae-Kyereme J, Croft SL, Kendrick H, Wright CW: Antiplasmodial activities of some Ghanaian plants traditionally used for fever/malaria treatment and of some alkaloids isolated from Pleiocarpa mutica; in vivo antimalarial activity of pleiocarpine. J Ethnopharmacol. 2001, 76: 99-103. 10.1016/S0378-8741(01)00212-4.View ArticlePubMedGoogle Scholar
  17. Kanokmedhakul S, Kanokmedhakul K, Yodbuddee D, Phonkerd N: New antimalarial bis-dehydroaporphine alkaloids from Polyalthia debilis. J. Nat. Prod. 2003, 66: 616-619. 10.1021/np020498d.View ArticlePubMedGoogle Scholar
  18. de Andrade-Neto VF, Pohlit AM, Pinto AC, Silva EC, Nogueira KL, Melo MR, Henrique MC, Amorim RC, Silva LF, Costa MR, Nunomura RC, Nunomura SM, Alecrim WD, Alecrim MG, Chaves FC, Vieira PP: In vitro inhibition of Plasmodium falciparum by substances isolated from Amazonian antimalarial plants. Mem Inst Oswaldo Cruz. 2007, 102: 359-365. 10.1590/S0074-02762007000300016.PubMedGoogle Scholar
  19. Houël E, Bertani S, Bourdy G, Deharo E, Jullian V, Valentin A, Chevalley S, Stien D: Quassinoid constituents of Quassia amara L. leaf herbal tea. Impact on its antimalarial activity and cytotoxicity. J Ethnopharmacol. 2009, 126: 114-118. 10.1016/j.jep.2009.07.037.View ArticlePubMedGoogle Scholar
  20. Zhang HJ, Tamez PA, Vu DH, Ghee TT, Nguyen VH, Le TX, Le MH, Nguyen MC, Do TT, Soejarto DD, Fong HH, Pezzuto JM: Antimalarial compounds from Rhaphidophora decursiva. J Nat Prod. 2001, 64: 772-777. 10.1021/np010037c.View ArticlePubMedGoogle Scholar
  21. He ZD, Ma CY, Tan GT, Sydara K, Tamez P, Southavong B, Bouamanivong S, Soejarto DD, Pezzuto JM, Fong HH, Zhang HJ: Rourinoside and rouremin, antimalarial constituents from Rourea minor. Phytochemistry. 2006, 67: 1378-1384. 10.1016/j.phytochem.2006.04.012.View ArticlePubMedGoogle Scholar
  22. Likhitwitayawuid K, Angerhofer CK, Chai H, Pezzuto JM, Cordell GA, Ruangrungsi N: Cytotoxic and antimalarial alkaloids from the tubers of Stephania pierrei. J Nat Prod. 1993, 56: 1468-1478. 10.1021/np50099a005.View ArticlePubMedGoogle Scholar
  23. Frédérich M, De Pauw MC, Llabrès G, Tits M, Hayette MP, Brandt V, Penelle J, De Mol P, Angenot L: New antimalarial and cytotoxic sungucine derivatives from Strychnos icaja roots. Planta Med. 2000, 66: 262-269. 10.1055/s-2000-8559.View ArticlePubMedGoogle Scholar
  24. Roumy V, Fabre N, Portet B, Bourdy G, Acebey L, Vigor C, Valentin A, Moulis C: Four anti-protozoal and anti-bacterial compounds from Tapirira guianensis. Phytochemistry. 2009, 70: 305-311. 10.1016/j.phytochem.2008.10.003.View ArticlePubMedGoogle Scholar
  25. Muiva LM, Yenesew A, Derese S, Heydenreich M, Peter MG, Akala HM, Eyase F, Waters NC, Mutai C, Keriko JM, Walsh D: Antiplasmodial β-hydroxydihydrochalcone from seedpods of Tephrosia elata. Phytochem Let. 2009, 2: 99-102. 10.1016/j.phytol.2009.01.002.View ArticleGoogle Scholar
  26. Henchiri H, Bodo B, Deville A, Dubost L, Zourgui L, Raies A, Grellier P, Mambu L: Sesquiterpenoids from Teucrium ramosissimum. Phytochemistry. 2009, 70: 1435-1441. 10.1016/j.phytochem.2009.08.012.View ArticlePubMedGoogle Scholar
  27. Goffin E, Ziemons E, De Mol P, de Madureira Mdo C, Martins AP, da Cunha AP, Philippe G, Tits M, Angenot L, Frédérich M: In vitro antiplasmodial activity of Tithonia diversifolia and identification of its main active constituent: tagitinin C. Planta Med. 2002, 68: 543-545. 10.1055/s-2002-32552.View ArticlePubMedGoogle Scholar
  28. Oketch-Rabah HA, Mwangi JW, Lisgarten J, Mberu EK: A new antiplasmodial coumarin from Toddalia asiatica roots. Fitoterapia. 2000, 71: 636-640. 10.1016/S0367-326X(00)00222-7.View ArticlePubMedGoogle Scholar
  29. Alves TM, Nagem TJ, de Carvalho LH, Krettli AU, Zani CL: Antiplasmodial triterpene from Vernonia brasiliana. Planta Med. 1997, 63: 554-555. 10.1055/s-2006-957764.View ArticlePubMedGoogle Scholar
  30. Ramanandraibe V, Martin MT, Rakotondramanana DL, Mambu L, Ramanitrahasimbola D, Labaïed M, Grellier P, Rasoanaivo P, Frappier F: Pseudoguanolide sesquiterpene lactones from Vernoniopsis caudata and their in vitro antiplasmodial activities. J Nat Prod. 2005, 68: 800-803. 10.1021/np0401866.View ArticlePubMedGoogle Scholar
  31. Moon HI, Jung JC, Lee J: Antiplasmodial activity of triterpenoid isolated from whole plants of Viola genus from South Korea. Parasitol Res. 2007, 100: 641-644. 10.1007/s00436-006-0279-8.View ArticlePubMedGoogle Scholar
  32. Jullian V, Bourdy G, Georges S, Maurel S, Sauvain M: Validation of use of a traditional antimalarial remedy from French Guiana, Zanthoxylum rhoifolium Lam. J Ethnopharmacol. 2006, 106: 348-352. 10.1016/j.jep.2006.01.011.View ArticlePubMedGoogle Scholar
  33. Moein MR, Pawar RS, Khan SI, Tekwani BL, Khan IA: Antileishmanial, antiplasmodial and cytotoxic activities of 12,16-dideoxy aegyptinone B from Zhumeria majdae Rech.f. & Wendelbo. Phytother Res. 2008, 22: 283-285. 10.1002/ptr.2305.View ArticlePubMedGoogle Scholar

Copyright

© Deharo and Ginsburg; licensee BioMed Central Ltd. 2011

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Advertisement