Zaim M, Guillet P: Alternative insecticides: an urgent need. Trends Parasitol. 2002, 18: 161-163. 10.1016/S1471-4922(01)02220-6.
Article
PubMed
Google Scholar
Nauen R: Insecticide resistance in disease vectors of public health importance. Pest Manag Sci. 2007, 63: 628-633. 10.1002/ps.1406.
Article
CAS
PubMed
Google Scholar
Dondorp AM, Yeung S, White L, Nguon C, Day NPJ, Socheat D, von Seidlein L: Artemisinin resistance: current status and scenarios for containment. Nat Rev Microbiol. 2010, 8: 272-280.
Article
CAS
PubMed
Google Scholar
Dondorp AM, Fairhurst RM, Slutsker L, MacArthur JR, Breman JG, Guerin PJ, Wellems TE, Ringwald P, Newman RD, Plowe CV: The threat of artemisinin-resistant malaria. N Engl J Med. 2011, 365: 1073-1075. 10.1056/NEJMp1108322.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V: Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control?. Trends Parasitol. 2011, 27: 91-98. 10.1016/j.pt.2010.08.004.
Article
CAS
PubMed
Google Scholar
Phyo AP, Nkhoma S, Stepniewska K, Ashley EA, Shalina N, McGready R, Ler Moo C, Al-Saai S, Dondorp AM, Lwin KM, Singhasivanon P, Day NPJ, White NJ, Anderson TJC, Nosten F: Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet. 2012, 379: 1960-1966. 10.1016/S0140-6736(12)60484-X.
Article
PubMed Central
PubMed
Google Scholar
Chandra E, Hemingway J, Kleinschmidt I, Rehmna AM, Ramdeen V, Phiri FN, Coetzer S, Mthembu D, Shinondo CJ, Chizema-Kawesha E, Kamuliwo M, Mukonka V, Baboo KS, Coleman M: Insecticide resistance and the future of malaria control in Zambia. PLoS One. 2011, 6: e24336-10.1371/journal.pone.0024336.
Article
Google Scholar
N’Guessan R, Corbel V, Akogbeto M, Rowland M: Reduced efficacy of insecticide-treated nets and indoor residual spraying for malaria control in pyrethroid resistance area, Benin. Emerg Infect Dis. 2007, 13: 199-206. 10.3201/eid1302.060631.
Article
PubMed Central
PubMed
Google Scholar
Abilio AP, Kleinschmidt I, Rehman AM, Cuamba N, Ramdeen V, Mthembu DS, Coetzer S, Maharaj R, Wilding CS, Steven A, Coleman M, Hemingway J, Coleman M: The emergence of insecticide resistance in central Mozambique and potential threat to the successful indoor residual spraying malaria control programme. Malar J. 2011, 10: 110-10.1186/1475-2875-10-110.
Article
PubMed Central
PubMed
Google Scholar
Hunt RH, Fuseini G, Knowles S, Stiles-Ocran J, Verster R, Kaiser ML, Choi KS, Koekemoer LL, Coetzee M: Insecticide resistance in malaria vector mosquitoes at four localities in Ghana. West Africa. Parasit Vectors. 2011, 4: 107-
Article
PubMed
Google Scholar
Asidi S, N’Guessan R, Akogbeto M, Curtis C, Rowland M: Loss of household protection from use of insecticide-treated nets against pyrethroid-resistant mosquitoes, Benin. Emerg Infect Dis. 2012, 18: 1101-1106. 10.3201/eid1807.120218.
Article
PubMed Central
PubMed
Google Scholar
Blanford S, Chan BHK, Jenkins N, Sim D, Turner RJ, Read AF, Thomas MB: Fungal pathogen reduces potential for malaria transmission. Science. 2005, 308: 1638-1641. 10.1126/science.1108423.
Article
CAS
PubMed
Google Scholar
Scholte E-J, Ng’Habi K, Kihonda J, Takken W, Paiijmans K, Abdulla S, Killeen GF, Knols BGJ: An entomopathogenic fungus for control of adult African malaria mosquitoes. Science. 2005, 308: 1641-1643. 10.1126/science.1108639.
Article
CAS
PubMed
Google Scholar
Thomas MB, Read AF: Can fungal biopesticides control malaria?. Nat Rev Microbiol. 2007, 5: 377-383. 10.1038/nrmicro1638.
Article
CAS
PubMed
Google Scholar
Farenhorst M, Farina D, Scholte EJ, Takken W, Hunt RH, Coetzee M, Knols BGJ: African water storage pots for the delivery of the entomopathogenic fungus Metarhizium anisopliae to the malaria vectors Anopheles gambiae s.s. and Anopheles funestus. Am J Trop Med Hyg 2008, . 2008, 78: 910-916.
Google Scholar
Mnyone LL, Lyimo IN, Lwetoijera DW, Mpingwa MW, Nchimbi N, Hancock PA, Russell TL, Kirby MJ, Takken W, Koendraadt CJM: Exploiting the behaviour of wild malaria vectors to achieve high infection with fungal biocontrol agents. Malar J. 2012, 11: 87-10.1186/1475-2875-11-87.
Article
PubMed Central
PubMed
Google Scholar
Lwetoijera DW, Sumaye RD, Madumla EP, Kavishe DR, Mnyone LL, Russell TL, Okumu FO: An extra-domiciliary method of delivering entomopathogenic fungus, Metarhizium anisopliae IP 46 for controlling adult populations of the malaria vector. Anopheles arabiensis. Parasit Vectors. 2010, 3: 18-10.1186/1756-3305-3-18.
Article
PubMed Central
PubMed
Google Scholar
Blanford S, Shi W, Riann C, Marden JH, Koekemoer LL, Brooke BD, Coetzee M, Read AF, Thomas MB: Lethal and Pre-lethal effects of a fungal biopesticide contribute to substantial and rapid vector control. PLoS One. 2011, 6: e23591-10.1371/journal.pone.0023591.
Article
PubMed Central
CAS
PubMed
Google Scholar
Paula AR, Carolino AT, Silva CP, Samuels RI: Susceptibility of adult females Aedes aegypti (Diptera: Culicidae) to the entomopathogenic fungus Metarhizium anisopliae is modified following blood feeding. Parasit Vectors. 2011, 4: 91-10.1186/1756-3305-4-91.
Article
PubMed Central
PubMed
Google Scholar
Ansari MA, Pope EC, Carpenter S, Scholte E-J, Butt TM: Entomopathogenic fungi as a biological control for an important vector of livestock disease: the Culicoides biting midge. PLoS One. 2011, 6: e16108-10.1371/journal.pone.0016108.
Article
PubMed Central
CAS
PubMed
Google Scholar
Howard AFV, N’Guessan R, Koenraadt CJM, Asidi A, Farenhorst M, Akogbeto M, Thomas MB, Knols BGJ, Takken W: The entomopathogenic fungus Beauveria bassiana reduces instantaneous blood feeding in wild multi-insecticide-resistant Culex quinquefasciatus mosquitoes in Benin, West Africa. Parasit Vectors. 2010, 3: 87-10.1186/1756-3305-3-87.
Article
PubMed Central
PubMed
Google Scholar
Scholte E-J, Takken W, Knols BGJ: Infection of adult Aedes aegypti and Ae. albopictus mosquitoes with the entomopathogenic fungus Metarhizium anisopliae. Acta Trop. 2007, 102: 151-158. 10.1016/j.actatropica.2007.04.011.
Article
PubMed
Google Scholar
Scholte E-J, Takken W, Knols BGJ: Infection of the malaria mosquito Anopheles gambiae with the entomopathogenic fungus Metarhizium anisopliae reduces blood feeding and fecundity. J Invertebr Pathol. 2005, 91: 43-49.
Article
PubMed
Google Scholar
George J, Blanford S, Domingue MJ, Thomas MB, Read AF, Baker TC: Reduction in host-finding behaviour in fungus-infected mosquitoes is correlated with reduction in olfactory receptor neuron responsiveness. Malar J. 2011, 10: 219-10.1186/1475-2875-10-219.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dolgin E: Evolution, Resisted. Scientist. 2009, 23: 44-57.
Google Scholar
WHO: Guidelines for testing mosquito adulticides for indoor residual spraying and treatment of mosquito nets. 2006, Rome: World Health Organization, WHO/CDS/NTD/WHOPES/GCDPP/2006.3
Google Scholar
Hancock PA: Combining fungal biopesiticides and insecticide-treated bednets to enhance malaria control. PLoS Comput Biol. 2009, 5: e10000525-
Article
Google Scholar
Hancock PA, Thomas MB, Godfray HCJ: An age-structured model to evaluate the potential of novel malaria-control interventions: a case study of fungal biopesticide sprays. Proc R Soc Lond B Bio. 2009, 276: 71-80. 10.1098/rspb.2008.0689.
Article
CAS
Google Scholar
Read AF, Lynch PA, Thomas MB: How to make evolution-proof insecticides for malaria control. PLoS Biol. 2009, 7: e1000058-
Article
PubMed Central
PubMed
Google Scholar
Koella JC, Lynch PA, Thomas MB, Read AF: Towards evolution-proof malaria control with insectides. Evol Appl. 2009, 2: 469-480. 10.1111/j.1752-4571.2009.00072.x.
Article
PubMed Central
PubMed
Google Scholar
Darbro J, Graham RI, Kay BH, Ryan PA, Thomas MB: Evaluation of entomopathogenic fungi as potential biological control agents of the dengue mosquito, Aedes aegypti (Diptera: Culicidae). Biocontrol Sci Techn. 2011, 21: 1027-1047. 10.1080/09583157.2011.597913.
Article
Google Scholar
Mnyone LL, Kirby MJ, Lwetoijera DW, Mpinga MW, Knols BGJ, Takken W, Russell TL: Infection of the malaria mosquito, Anopheles gambiae, with two species of entomopathogenic fungi: effects of concentration, formulation, exposure time and persistence. Malar J. 2009, 8: 309-10.1186/1475-2875-8-309.
Article
PubMed Central
PubMed
Google Scholar
Kikankie CK, Brooke BD, Knols BGJ, Koekemoer LL, Farenhorst M, Hunt RH, Thomas MB, Coetzee M: The infectivity of the entomopathogenic fungus Beauveria bassiana to insecticide-resistant and susceptible Anopheles arabiensis mosquitoes at two different temperatures. Malar J. 2010, 9: 71-10.1186/1475-2875-9-71.
Article
PubMed Central
PubMed
Google Scholar
Leles RN, Sousa NA, Rocha LFN, Santos AH, Silva HHG, Luz C: Pathogenicity of some hypocrealean fungi to adult Aedes aegypti (Diptera: Culicidae). Parasitol Res. 2010, 107: 1271-1274. 10.1007/s00436-010-1991-y.
Article
PubMed
Google Scholar
de Paula AR, Brito ES, Pereira CR, Carrera MP, Samuels RI: Susceptibility of adult Aedes aegyti (Diptera Culicidae) to infection by Metarhizium anisopliae and Beauveria bassiana: prospects for Dengue vector control. Biocontr Sci Techn. 2008, 18: 1017-1025. 10.1080/09583150802509199.
Article
Google Scholar
Farenhorst M, Mouatcho JC, Kikankie CK, Brooke BD, Hunt RC, Thomas MB, Koekemoer LL, Knols BGJ, Coetzee M: Fungal infection counters insecticide resistance in African malaria mosquitoes. Proc Natl Acad Sci USA. 2009, 106: 17443-17447. 10.1073/pnas.0908530106.
Article
PubMed Central
CAS
PubMed
Google Scholar
Howard AFV, Koenraaddt CJM, Farenhorst M, Knols BGJ, Takken W: Pyrethroid resistance in Anopheles gambiae leads to increased susceptibility to the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana. Malar J. 2010, 9: 168-10.1186/1475-2875-9-168.
Article
PubMed Central
PubMed
Google Scholar
Howard AFV, N’Guessan R, Koenraadt C, Asidi A, Farnehorst M, Akogbeto M, Knols BGJ, Takken W: First report of the infection of insecticide-resistant malaria vector mosquitoes with an entomopathogenic fungus under field conditions. Malar J. 2011, 10: 24-10.1186/1475-2875-10-24.
Article
PubMed Central
PubMed
Google Scholar
Bell AS, Blanford S, Jenkins N, Thomas MB, Read AF: Real-time quantitative PCR for analysis of candidate fungal biopesticides against malaria: Technique validation and first applications. J Invertebr Pathol. 2009, 100: 160-168. 10.1016/j.jip.2009.01.006.
Article
PubMed Central
CAS
PubMed
Google Scholar
Blanford S, Read AF, Thomas MB: Thermal behaviour of Anopheles stephensi in response to infection with malaria and fungal pathogens. Malar J. 2009, 8: 72-10.1186/1475-2875-8-72.
Article
PubMed Central
PubMed
Google Scholar
Farenhorst M, Hilhorst A, Thomas MB, Knols BGJ: Development of fungal applications on netting substrates for malaria vector control. J Med Entomol. 2011, 48: 305-311. 10.1603/ME10134.
Article
PubMed
Google Scholar
Farenhorst M, Knols BGJ: A novel method for standardized application of fungal spore coatings for mosquito exposure bioassays. Malar J. 2010, 9: 27-10.1186/1475-2875-9-27.
Article
PubMed Central
PubMed
Google Scholar
Mnyone LL, Koenraadt CJM, Lyimo IN, Mpingwa MW, Takken W, Russell TL: Anopheline and culicine mosquitoes are not repelled by surfaces treated with the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana. Parasit Vectors. 2010, 3: 80-10.1186/1756-3305-3-80.
Article
PubMed Central
PubMed
Google Scholar
Mnyone LL, Kirby MJ, Mpingwa MW, Letoijera DW, Knols BGJ, Takken W, Koenraadt CJM, Russell TL: Infection of Anopheles gambiae mosquitoes with entomopathogenic fungi: effect of host age and blood-feeding status. Parasitol Res. 2011, 108: 317-322. 10.1007/s00436-010-2064-y.
Article
PubMed Central
PubMed
Google Scholar
Mnyone LL, Kirby MJ, Lweitojera DW, Mpingwa MW, Simfukwe ET, Knols BGJ, Takken W, Russell TL: Tools for delivering entomopathogenic fungi to malaria mosquitoes: effects of delivery surfaces on fungal efficacy and persistence. Malar J. 2010, 9: 246-10.1186/1475-2875-9-246.
Article
PubMed Central
PubMed
Google Scholar
Mouatcho JC, Koekemoer LL, Coetzee M, Brooke BD: The effect of entomopathogenic fungi on female fecundity of the major malaria vector, Anopheles funestus. African Entomol. 2011, 19: 725-729. 10.4001/003.019.0311.
Article
Google Scholar
Scholte E-J, Knols BGJ, Takken W: Autodissemination of the entomopathogenic fungus Metarhizium anisopliae amongst adults of the malaria vector Anopheles gambiae s.s. Malar J. 2004, 3: 45-10.1186/1475-2875-3-45.
Article
PubMed Central
PubMed
Google Scholar
Scholte E-J, Njiru BN, Smallegange RC, Takken W, Knols BGJ: Infection of the malaria (Anopheles gambiae s.s.) and filariasis (Culex quinquefasciatus) vectors with the entomopathogenic fungus Metarhizium anisopliae. Malar J. 2003, 2: 29-10.1186/1475-2875-2-29.
Article
PubMed Central
PubMed
Google Scholar
Achonduh OA, Tondje PR: First report of pathogenicity of Beauveria bassiana RBL1034 to the malaria vector Anopheles gambiae s.l. (Diptera; Culicidae) in Cameroon. African J Biotechnol. 2008, 7: 931-935.
Google Scholar
Dong Y, Morton JC, Ramirez JL, Souza-Neto JA, Dimopoulos G: The entomopathogenic fungus Beauveria bassiana activate toll and JAK-STAT pathway-controlled effector genes and anti-dengue activity in Aedes aegypti. Ins Biochem Mol Biol. 2012, 42: 126-132. 10.1016/j.ibmb.2011.11.005.
Article
CAS
Google Scholar
Fang W, Vega-Rodriguez J, Ghosh AK, Jacos-Lorean M, Kang A, St Leger RJ: Development of transgenic fungi that kill human malaria parasites in mosquitoes. Science. 2011, 331: 1074-1077. 10.1126/science.1199115.
Article
PubMed Central
CAS
PubMed
Google Scholar
Garcia-Mungia AM, Garza-Hernandez JA, Rebollar-Tellez EA, Rodriquez-Perez MA, Reyes-Villanueva F: Transmission of Beauveria bassiana from male to female Aedes aegypti mosquitoes. Parasit Vectors. 2011, 4: 24-10.1186/1756-3305-4-24.
Article
Google Scholar
Kannan SK, Murugan K, Kumar AN, Ramasubramanian N, Mathiyazhagan P: Adulticidal effect of fungal pathogen, Metarhizium anisopliae on malarial vector Anopheles stephensi (Diptera: Culicidae). African J Biotechnol. 2008, 7: 838-841.
Google Scholar
Mohanty SS, Raghavendra K, Rai U, Dash AP: Efficacy of female Culex quinquefasciatus with entomopathogenic fungus Fusarium pallidoroseum. Parasitol Res. 2008, 103: 171-174. 10.1007/s00436-008-0946-z.
Article
PubMed
Google Scholar
Mnyone LL, Russell TL, Lyimo IN, Lwetoijera DW, Kirby MJ, Luz C: First report of Metarhizium anisopliae IP 46 pathogenicity in adult Anopheles gambiae s.s. and An arabiensis (Diptera: Culicidae). Parasit Vectors. 2009, 2: 59-10.1186/1756-3305-2-59.
Article
PubMed Central
PubMed
Google Scholar
Paula AR, Carolina AT, Paula CO, Samuels RI: The combination of the entomopathogenic fungus Metarhizium anisopliae with the insecticide Imidacloprid increases virulence against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasit Vectors. 2011, 4: 8-10.1186/1756-3305-4-8.
Article
PubMed Central
PubMed
Google Scholar
Reyes-Villanueva F, Garza-Hernandez JA, Garcia-Munguia AM, Tamez-Guerra P, Howard AFV, Rodriguez-Perez MA: Dissemination of Metarhizium anisopliae of low and high virulence by mating behavior on Aedes aegypti. Parasit Vectors. 2011, 4: 171-10.1186/1756-3305-4-171.
Article
PubMed Central
PubMed
Google Scholar
Hussain A, Tian M-Y, He Y-R, Ahmed S: Entomopathogenic fungi disturbed the larval growth and feeding performance of Ocinara varians (Lepidoptera: Bombycidae) larvae. Insect Sci. 2009, 16: 511-517. 10.1111/j.1744-7917.2009.01272.x.
Article
Google Scholar
Tefera T, Pringle KL: Mortality and maize leaf consumption of Chilo partellus (Lepidoptera: Pyralidae) larvae treated with Beauveria bassiana and Metarhizium anisopliae. Int J Pest Manage. 2004, 50: 29-34. 10.1080/09670870310001626347.
Article
Google Scholar
Anderson RD, Bell AS, Blanford S, Paijmans KP, Thomas MB: Comparative growth kinetics and virulence of four different isolates of entomopathogenic fungi in the house fly (Musca domestica L.). J Invertebr Pathol. 2011, 107: 179-184. 10.1016/j.jip.2011.04.004.
Article
PubMed
Google Scholar
Xia Y, Clarkson JM, Charnley AK: Trehalose-hydrolysing enzymes of Metarhizium anisopliae and their role in pathogenesis of the tobacco hornworm, Manduca sexta. J Invertebr Pathol. 2002, 80: 139-147. 10.1016/S0022-2011(02)00105-2.
Article
CAS
PubMed
Google Scholar
Chapman RF: The Insects: Structure and Function. 1998, Cambridge: Cambridge University Press, 4
Book
Google Scholar
Clements AN: The Biology of Mosquitoes: Sensory Reception and Behaviour Volume 2. 1999, Wallingford: CABI Publishing
Google Scholar
Adamo SA: Comparative psychoneuroimmunology; evidence from the insects. Behav Cognitive Neurosci. 2006, 5: 128-140. 10.1177/1534582306289580.
Article
Google Scholar
Kraaijeveld AR, Godfray HCJ: Selection for resistance to a fungal pathogen in Drosophila melanogaster. Heredity. 2008, 100: 400-406. 10.1038/sj.hdy.6801092.
Article
CAS
PubMed
Google Scholar
Tabashnik BE: Evolution of resistance to Bacillus thuringiensis. Annu Rev Entomol. 1994, 39: 47-79. 10.1146/annurev.en.39.010194.000403.
Article
Google Scholar
Asser-Kaiser S, Fritsch E, Undorf-Spahn K, Kienzle J, Eberle KE, Gund NA, Reinecke A, Zebitz CPW, Heckel DG, Huber J, Jehle JA: Rapid emergence of baculovirus resistance in codling moth due to dominant, sex-linked inheritance. Science. 2007, 317: 1916-1918. 10.1126/science.1146542.
Article
CAS
PubMed
Google Scholar
Abot AR, Moscardi F, Fuxa JR, SosaGomez DR, Richter AR: Development of resistance to Anticarsia gemmatalis from Brazil and the United States to a nuclear polyhedrosis virus under laboratory selection pressure. Biol Control. 1996, 7: 127-130.
Article
Google Scholar
Tinsley MC, Blanford S, Jiggins FM: Genetic variation in Drosophila melanogaster pathogen susceptibility. Parasitol. 2006, 132: 767-773. 10.1017/S0031182006009929.
Article
CAS
Google Scholar
Fang W, Vega R, Ghosh AK, Jacobs-Lorena M, Kang A, St Leger RJ: Development of transgenic fungi that kill human malaria parasites in mosquitoes. Science. 2011, 331: 1074-1077. 10.1126/science.1199115.
Article
PubMed Central
CAS
PubMed
Google Scholar
Thomas MB, Blanford S, Jenkins NE, Killeen GF, Knols BF, Read AF, Scholte E-J, Takken W: Benefits and risks in malaria control – response. Science. 2005, 310: 51-51. 10.1126/science.310.5745.51.
Article
CAS
Google Scholar
Hughes GL, Koga R, Xue P, Fukatsu T, Rasgon JL: Wolbachia infections are virulent and inhibit the human malaria parasite Plasmodium falciparum in Anopheles gambiae. PLoS Pathog. 2011, 7: 2043-2043.
Google Scholar
McMeniman CJ, Lane RV, Cass BN, Fong AWC, Sidhu M, Wang Y-F, O’Neill SL: Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science. 2009, 323: 141-144. 10.1126/science.1165326.
Article
CAS
PubMed
Google Scholar
Ren XX, Rasgon JL: Potential for the Anopheles gambiae densonucleosis virus to act as an “Evolution-Proof” biopesticide. J Virol. 2010, 84: 7726-7729. 10.1128/JVI.00631-10.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lorenz LM, Koella JC: The microsporidian parasite Vavraia culicis as a potential late life-acting control agent of malaria. Evol Appl. 2011, 4: 783-790. 10.1111/j.1752-4571.2011.00199.x.
Article
PubMed Central
PubMed
Google Scholar
Muller GC, Beier JC, Traore SF, Toure MB, Traore MM, Bah S, Doumbia S, Schlein Y: Field experiments of Anopheles gambiae attraction to local fruits/seedpods and flowering plants in Mali to optimize strategies for malaria vector control in Africa using attractive toxic bait methods. Malar J. 2010, 9: 262-10.1186/1475-2875-9-262.
Article
PubMed Central
PubMed
Google Scholar
Beier JC, Muller GC, Gu WD, Arheart KL, Schlein Y: Attractive toxic bait (ATSB) methods decimate populations of Anopheles malaria vectors in arid environments regardless of the local availability of favoured sugar-source blossoms. Malar J. 2012, 11: 31-10.1186/1475-2875-11-31.
Article
PubMed Central
PubMed
Google Scholar
Thomas MB, Godfray HCJ, Read AF, van den Berg H, Tabashnik BE, van Lenteren JC, Waage JK, Takken W: Lessons from agriculture for the sustainable management of malaria vectors. PLoS Med. 2012, 9: e1001262-10.1371/journal.pmed.1001262.
Article
PubMed Central
PubMed
Google Scholar