Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V: Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control?. Trends Parasitol. 2011, 27: 91-98.
Article
CAS
PubMed
Google Scholar
Mitchell SN, Stevenson BJ, Muller P, Wilding CS, Egyir-Yawson A, Field SG, Hemingway J, Paine MJI, Ranson H, Donnelly MJ: Identification and validation of a gene causing cross-resistance between insecticide classes in Anopheles gambiae from Ghana. Proc Natl Acad Sci USA. 2012, 109: 6147-6152.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lengeler C: Insecticide-treated nets for malaria control: real gains. Bull World Health Organ. 2004, 82: 84-
PubMed Central
PubMed
Google Scholar
Pluess B, Tanser FC, Lengeler C, Sharp BL: Indoor residual spraying for preventing malaria. Cochrane Database Syst Rev. 2010, 4: CD006657-
PubMed
Google Scholar
Benedict MQ, Robinson AS: The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends Parasitol. 2003, 19: 349-355.
Article
PubMed
Google Scholar
Alphey L, Beard CB, Billingsley P, Coetzee M, Crisanti A, Curtis C, Eggleston P, Godfray C, Hemingway J, Jacobs-Lorena M, James AA, Kafatos FC, Mukwaya LG, Paton M, Powell JR, Schneider W, Scott TW, Sina B, Sinden R, Sinkins S, Spielman A, Toure Y, Collins FH: Malaria control with genetically manipulated insect vectors. Science. 2002, 298: 119-121.
Article
CAS
PubMed
Google Scholar
Benedict MQ, Knols BGJ, Bossin HC, Howell PI, Mialhe E, Caceres C, Robinson AS: Colonisation and mass rearing: learning from others. Malar J. 2009, 8: S4-
Article
PubMed Central
PubMed
Google Scholar
Howell PI, Knols BGJ: Male mating biology. Malar J. 2009, 8: S8-
Article
PubMed Central
PubMed
Google Scholar
Asman SM, McDonald PT, Prout T: Field studies of genetic-control systems for mosquitoes. Annu Rev Entomol. 1981, 26: 289-318.
Article
CAS
PubMed
Google Scholar
Grover KK, Curtis CF, Sharma VP, Singh KRP, Dietz K, Agarwal HV, Razdan RK, Vaidyanathan V: Competitiveness of chemo-sterilized males and cytoplasmically incompatible translocated males of Culex pipiens fatigans wiedemann (Diptera, Culicidae) in field. Bull Entomol Res. 1976, 66: 469-480.
Article
Google Scholar
Marrelli MT, Moreira CK, Kelly D, Alphey L, Jacobs-Lorena M: Mosquito transgenesis: what is the fitness cost?. Trends Parasitol. 2006, 22: 197-202.
Article
PubMed
Google Scholar
Reisen WK: Lessons from the past: historical studies by the University of Maryland and the University of California, Berkeley. Ecological aspects for application of genetically modified mosquitoes. Edited by: Takken W, Scott TW. 2003, Dordrecht: Kluwer Academic, 25-32.
Google Scholar
Norris DE, Shurtleff AC, Toure YT, Lanzaro GC: Microsatellite DNA polymorphism and heterozygosity among field and laboratory populations of Anopheles gambiae s.s. (Diptera: Culicidae). J Med Entomol. 2001, 38: 336-340.
Article
CAS
PubMed
Google Scholar
Munstermann LE: Unexpected genetic consequences of colonization and inbreeding - allozyme tracking in Culicidae (Diptera). Ann Entomol Soc Am. 1994, 87: 157-164.
Article
Google Scholar
Gale KR, Crampton JM: DNA probes for species identification of mosquitoes in the Anopheles gambiae complex. Med Vet Entomol. 1987, 1: 127-136.
Article
CAS
PubMed
Google Scholar
Wright LI, Tregenza T, Hosken DJ: Inbreeding, inbreeding depression and extinction. Conserv Genet. 2008, 9: 833-843.
Article
Google Scholar
Charlesworth D, Charlesworth B: Inbreeding depression and its evolutionary consequences. Annu Rev Ecol Syst. 1987, 18: 237-268.
Article
Google Scholar
Charlesworth B, Charlesworth D: The genetic basis of inbreeding depression. Genet Res. 1999, 74: 329-340.
Article
CAS
PubMed
Google Scholar
Kristensen TN, Sorensen AC: Inbreeding - lessons from animal breeding, evolutionary biology and conservation genetics. Anim Sci. 2005, 80: 121-133.
Google Scholar
Chapman JR, Nakagawa S, Coltman DW, Slate J, Sheldon BC: A quantitative review of heterozygosity-fitness correlations in animal populations. Mol Ecol. 2009, 18: 2746-2765.
Article
CAS
PubMed
Google Scholar
Tripet F, Thiemann T, Lanzaro GC: Effect of seminal fluids in mating between M and S forms of Anopheles gambiae. J Med Entomol. 2005, 42: 596-603.
Article
CAS
PubMed
Google Scholar
Rutledge LC, Piper GN: Inbreeding of Aedes aegypti and Anopheles stephensi. Mosq News. 1984, 44: 43-50.
Google Scholar
Ferguson HMJ, John B, Ng’habi K, Knols BGJ: Redressing the sex imbalance in knowledge of vector biology. Trends Ecol Evol. 2005, 20: 202-209.
Article
PubMed
Google Scholar
Klowden MJ, Chamber GM: Production of polymorphic sperm by anopheline mosquitoes and their fate within the female genital tract. J Insect Physiol. 2004, 50: 1163-1170.
Article
CAS
PubMed
Google Scholar
Helinski MEH, Knols BGJ: Sperm quantity and size variation in un-irradiated and irradiated males of the malaria mosquito Anopheles arabiensis Patton. Acta Trop. 2009, 109: 64-69.
Article
PubMed
Google Scholar
Voordouw MJ, Koella JC, Hurd H: Intra-specific variation of sperm length in the malaria vector Anopheles gambiae: males with shorter sperm have higher reproductive success. Malar J. 2008, 7: 214-
Article
PubMed Central
PubMed
Google Scholar
Mahmood F, Reisen WK: Anopheles stephensi (Diptera: Culicidae): changes in male mating competence and reproductive system morphology associated with aging and mating. J Med Entomol. 1982, 19: 573-588.
Article
CAS
PubMed
Google Scholar
Mahmood F, Reisen WK: Anopheles Culicifacies: effects of age on the male reproductive system and mating ability of virgin adult mosquitoes. Med Vet Entomol. 1994, 8: 31-37.
Article
CAS
PubMed
Google Scholar
Huho BJ, Ng’habi KR, Killeen GF, Nkwengulila G, Knols BG, Ferguson HM: A reliable morphological method to assess the age of male Anopheles gambiae. Malar J. 2006, 5: 62-
Article
PubMed Central
PubMed
Google Scholar
Klowden MJ: The check is in the male: male mosquitoes affect female physiology and behavior. J Am Mosq Control Assoc. 1999, 15: 213-220.
CAS
PubMed
Google Scholar
Dottorini T, Nicolaides L, Ranson H, Rogers DW, Crisanti A, Catteruccia F: A genome-wide analysis in Anopheles gambiae mosquitoes reveals 46 male accessory gland genes, possible modulators of female behavior. Proc Natl Acad Sci USA. 2007, 104: 16215-16220.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rogers DW, Whitten MA, Thailayil J, Soichot J, Levashina EA, Catteruccia F: Molecular and cellular components of the mating machinery in Anopheles gambiae females. Proc Natl Acad Sci USA. 2008, 105: 19390-19395.
Article
PubMed Central
CAS
PubMed
Google Scholar
Craig GB: Mosquitoes: female monogamy induced by male accessory gland substances. Science. 1967, 156: 1499-1501.
Article
PubMed
Google Scholar
Shutt B, Stables L, Aboagye-Antwi F, Moran J, Tripet F: Male accessory gland proteins induce female monogamy in anopheline mosquitoes. Med Vet Entomol. 2010, 24: 91-94.
Article
CAS
PubMed
Google Scholar
Lee JJ, Klowden MJ: A male accessory gland protein that modulates female mosquito (Diptera: Culicidae) host-seeking behavior. J Am Mosq Control Assoc. 1999, 15: 4-7.
CAS
PubMed
Google Scholar
Chambers GM, Klowden MJ: Age of Anopheles gambiae Giles male mosquitoes at time of mating influence female oviposition. J Vector Ecol. 2001, 26: 196-201.
CAS
PubMed
Google Scholar
Meredith JM, Basu S, Nimmo DD, Larget-Thiery I, Warr EL, Underhill A, McArthur CC, Carter V, Hurd H, Bourgouin C, Eggleston P: Site-specific integration and expression of an anti-malarial gene in transgenic Anopheles gambiae significantly reduces Plasmodium infections. PLoS One. 2011, 6: e14587-
Article
PubMed Central
CAS
PubMed
Google Scholar
Aboagye-Antwi F, Tripet F: Effects of larval growth condition and water availability on desiccation resistance and its physiological basis in adult Anopheles gambiae sensu stricto. Malar J. 2010, 9: 225-
Article
PubMed Central
PubMed
Google Scholar
Coluzzi M, Petrarca V, di Deco MA: Chromosomal inversion intergradation and incipient speciation in Anopheles gambiae. Boll Zool. 1985, 52: 45-63.
Article
Google Scholar
Toure YT, Petraca V, Traore SF, Coulibaly A, Maiga HM, Sankare SF, Sow M, di Deco MA, Coluzzi M: The distribution and inversion polymorphism of chromosomally recognized taxa of the Anopheles gambiae complex in Mali, West Africa. Parassitologia. 1998, 40: 477-511.
CAS
PubMed
Google Scholar
della Torre A, Costantini C, Besansky NJ, Caccone A, Petrarca V, Powell JR, Coluzzi M: Speciation within Anopheles gambiae - the glass is half full. Science. 2002, 298: 115-117.
Article
CAS
PubMed
Google Scholar
Lanzaro GC, Tripet F: Gene flow among populations of Anopheles gambiae: a critical review. Ecological aspects for application of genetically modified mosquitoes. Edited by: Takken W, Scott TW. 2003, Dordrecht: Kluwer Academic Press, 109-132.
Google Scholar
della Torre A, Fanello C, Akogbeto M, Dossou-yovo J, Favia G, Petrarca V, Coluzzi M: Molecular evidence of incipient speciation within Anopheles gambiae s.s. in West Africa. Insect Mol Biol. 2001, 10: 9-18.
Article
CAS
PubMed
Google Scholar
Favia G, Lanfrancotti A, Spanos L, Siden-Kiamos I, Louis C: Molecular Characterization of ribosomal DNA polymorphisms discriminating among chromosomal forms of Anopheles gambiae. Insect Mol Biol. 2001, 10: 19-23.
Article
CAS
PubMed
Google Scholar
Gentile G, Slotman M, Ketmaier V, Powell JR, Caccone A: Attempts to molecularly distinguish cryptic taxa in Anopheles gambiae s.s. Insect Mol Biol. 2001, 10: 25-32.
Article
CAS
PubMed
Google Scholar
Coetzee M, Hunt RH, Wilkerson R, Della Torre A, Coulibaly MB, Besansky NJ: Anopheles coluzzii and Anopheles amharicus, new members of the Anopheles gambiae complex. Zootaxa. 2013, 3619: 246-274.
Article
PubMed
Google Scholar
Fanello C, Santolamazza F, della Torre A: Simultaneous identification of species and molecular forms of the Anopheles gambiae complex by PCR-RFLP. Med Vet Entomol. 2002, 16: 461-464.
Article
CAS
PubMed
Google Scholar
Kadri ABH: Cross-resistance to an insect juvenile hormone analogue in a species of the Anopheles gambiae complex resistant to insecticides. J Med Entomol. 1975, 12: 10-12.
Article
CAS
PubMed
Google Scholar
Thyagarajan B, Olivares EC, Hollis RP, Ginsburg DS, Calos MP: Site-specific genomic integration in mammalian cells mediated by phage phi C31 integrase. Mol Cell Biol. 2001, 21: 3926-3934.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rasband WS: ImageJ. 2012, U.S. National Institutes of Health, Bethesda, Maryland, USA, imagej.nih.gov/ij/
Google Scholar
Lyimo EO, Koella JC: Relationship between body size of adult Anopheles gambiae s.l. and infection with the malaria parasite Plasmodium falciparum. Parasitology. 1992, 104: 233-237.
Article
PubMed
Google Scholar
Slate J, David P, Dodds KG, Veenvliet BA, Glass BC, Broad TE, McEwan JC: Understanding the relationship between the inbreeding coefficient and multilocus heterozygosity: theoretical expectations and empirical data. Heredity. 2004, 93: 255-265.
Article
CAS
PubMed
Google Scholar
Presgraves DC, Baker RH, Wilkinson GS: Coevolution of sperm and female reproductive tract morphology in stalk-eyed flies. Proc R Soc Lond B Biol Sci. 1999, 266: 1041-1047.
Article
Google Scholar
Miller GT, Pitnick S: Sperm-female coevolution in Drosophila. Science. 2002, 298: 1230-1233.
Article
CAS
PubMed
Google Scholar
Garcia-Gonzalez F, Simmons LW: Shorter sperm confer higher competitive fertilization success. Evolution. 2007, 61: 816-824.
Article
PubMed
Google Scholar
White GB, Muniss JN: Taxonomic value of spermatheca size for distinguishing four members of the Anopheles gambiae complex in East Africa. Bull World Health Organ. 1972, 46: 793-799.
PubMed Central
CAS
PubMed
Google Scholar
Diabate A, Dao A, Yaro AS, Adamou A, Gonzalez R, Manoukis NC, Traore SF, Gwadz RW, Lehmann T: Spatial swarm segregation and reproductive isolation between the molecular forms of Anopheles gambiae. Proc R Soc Lond B Biol Sci. 2009, 276: 4215-4222.
Article
Google Scholar
Diabate A, Yaro AS, Dao A, Diallo M, Huestis DL, Lehmann T: Spatial distribution and male mating success of Anopheles gambiae swarms. BMC Evol Biol. 2011, 11: 184-
Article
PubMed Central
PubMed
Google Scholar
Giglioli MEC, Mason GF: The mating plug in Anopheline mosquitoes. Proc R Entomol Soc Lond (A). 1966, 41: 123-129.
Google Scholar
Gage MJG: Associations between body-size, mating pattern, testis size and sperm lengths across butterflies. Proc R Soc Lond B Biol Sci. 1994, 258: 247-254.
Article
Google Scholar
Katvala M, Roenn JL, Arnqvist G: Correlated evolution between male ejaculate allocation and female remating behaviour in seed beetles (Bruchidae). J Evol Biol. 2008, 21: 471-479.
Article
CAS
PubMed
Google Scholar
Gay L, Hosken DJ, Vasudev R, Tregenza T, Eady PE: Sperm competition and maternal effects differentially influence testis and sperm size in Callosobruchus maculatus. J Evol Biol. 2009, 22: 1143-1150.
Article
CAS
PubMed
Google Scholar
Pitnick S, Miller GT, Reagan J, Holland B: Males’ evolutionary responses to experimental removal of sexual selection. Proc R Soc Lond B Biol Sci. 2001, 268: 1071-1080.
Article
CAS
Google Scholar
Mahmood F: Age-related changes in development of the accessory glands of male Anopheles albimanus. J Am Mosq Control Assoc (USA). 1997, 13: 35-39.
CAS
Google Scholar
Pondeville E, Maria A, Jacques JC, Bourgouin C, Dauphin-Villemant C: Anopheles gambiae males produce and transfer the vitellogenic steroid hormone 20-hydroxyecdysone to females during mating. Proc Natl Acad Sci USA. 2008, 105: 19631-19636.
Article
PubMed Central
CAS
PubMed
Google Scholar