WHO: Malaria. 2013, Geneva: World Health Organization
Google Scholar
Kanzok SM, Jacobs-Lorena M: Entomopathogenic fungi as biological insecticides to control malaria. Trends Parasitol. 2006, 22: 49-51. 10.1016/j.pt.2005.12.008.
Article
PubMed
Google Scholar
Thomas MB, Read AF: Can fungal biopesticides control malaria?. Nat Rev Microbiol. 2007, 5: 377-383. 10.1038/nrmicro1638.
Article
CAS
PubMed
Google Scholar
Knols BGJ, Bukhari T, Farenhorst M: Entomopathogenic fungi as the next-generation control agents against malaria mosquitoes. Future Microbiol. 2010, 5: 339-341. 10.2217/fmb.10.11.
Article
PubMed
Google Scholar
Castrillo LA, Griggs MH, Liu H, Bauer LS, Vandenberg JD: Assessing deposition and persistence of Beauveria bassiana GHA (Ascomycota: Hypocreales) applied for control of the emerald ash borer, Agrilus planipennis (Coleoptera: Buprestidae), in a commercial tree nursery. Biol Control. 2010, 54: 61-67. 10.1016/j.biocontrol.2010.03.005.
Article
Google Scholar
Lomer C, Bateman R: Biological control of locusts and grasshoppers. Annu Rev Entomol. 2001, 46: 667-702. 10.1146/annurev.ento.46.1.667.
Article
CAS
PubMed
Google Scholar
Clarkson JM, Charnley AK: New insights into the mechanisms of fungal pathogenesis in insects. Trends Microbiol. 1996, 4: 197-203. 10.1016/0966-842X(96)10022-6.
Article
CAS
PubMed
Google Scholar
Pedrini N, Crespo R, Juárez MP: Biochemistry of insect epicuticle degradation by entomopathogenic fungi. Comp Biochem Physiol C Toxicol Pharmacol. 2007, 146: 124-137. 10.1016/j.cbpc.2006.08.003.
Article
PubMed
Google Scholar
St Leger RJ, Joshi L, Roberts D: Ambient pH is a major determinant in the expression of cuticle-degrading enzymes and hydrophobin by Metarhizium anisopliae. Appl Environ Microbiol. 1998, 64: 709-713.
PubMed Central
CAS
PubMed
Google Scholar
Boomsma JJ, Jensen AB, Meyling NV, Eilenberg J: Evolutionary interaction networks of insect pathogenic fungi. Annu Rev Entomol. 2014, 59: 467-485. 10.1146/annurev-ento-011613-162054.
Article
CAS
PubMed
Google Scholar
Mnyone LL, Lyimo IN, Lwetoijera DW, Mpingwa MW, Nchimbi N, Hancock PA, Russell TL, Kirby MJ, Takken W, Koenraadt CJM: Exploiting the behaviour of wild malaria vectors to achieve high infection with fungal biocontrol agents. Malar J. 2012, 11: 87-10.1186/1475-2875-11-87.
Article
PubMed Central
PubMed
Google Scholar
Farenhorst M, Mouatcho JC, Kikankie CK, Brooke BD, Hunt RH, Thomas MB, Koekemoer LL, Knols BGJ, Coetzee M: Fungal infection counters insecticide resistance in African malaria mosquitoes. Proc Natl Acad Sci U S A. 2009, 106: 17443-17447. 10.1073/pnas.0908530106.
Article
PubMed Central
CAS
PubMed
Google Scholar
Howard AFV, Koenraadt CJM, Farenhorst M, Knols BGJ, Takken W: Pyrethroid resistance in Anopheles gambiae leads to increased susceptibility to the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana. Malar J. 2010, 9: 168-10.1186/1475-2875-9-168.
Article
PubMed Central
PubMed
Google Scholar
Howard AFV, N’Guessan R, Koenraadt CJM, Asidi A, Farenhorst M, Akogbéto M, Knols BGJ, Takken W: First report of the infection of insecticide-resistant malaria vector mosquitoes with an entomopathogenic fungus under field conditions. Malar J. 2011, 10: 24-10.1186/1475-2875-10-24.
Article
PubMed Central
PubMed
Google Scholar
Blanford S, Chan BHK, Jenkins N, Sim D, Turner RJ, Read AF, Thomas MB: Fungal pathogen reduces potential for malaria transmission. Science. 2005, 308: 1638-1641. 10.1126/science.1108423.
Article
CAS
PubMed
Google Scholar
Scholte E-J, Knols BGJ, Takken W: Infection of the malaria mosquito Anopheles gambiae with the entomopathogenic fungus Metarhizium anisopliae reduces blood feeding and fecundity. J Invertebr Pathol. 2006, 91: 43-49. 10.1016/j.jip.2005.10.006.
Article
PubMed
Google Scholar
Blanford S, Shi W, Christian R, Marden JH, Koekemoer LL, Brooke BD, Coetzee M, Read AF, Thomas MB: Lethal and pre-lethal effects of a fungal biopesticide contribute to substantial and rapid control of malaria vectors. PLoS One. 2011, 6: e23591-10.1371/journal.pone.0023591.
Article
PubMed Central
CAS
PubMed
Google Scholar
George J, Blanford S, Domingue MJ, Thomas MB, Read AF, Baker TC: Reduction in host-finding behaviour in fungus-infected mosquitoes is correlated with reduction in olfactory receptor neuron responsiveness. Malar J. 2011, 10: 219-10.1186/1475-2875-10-219.
Article
PubMed Central
CAS
PubMed
Google Scholar
Killeen GF, McKenzie FE, Foy BD, Schieffelin C, Billingsley PF, Beier JC: A simplified model for predicting malaria entomologic inoculation rates based on entomologic and parasitologic parameters relevant to control. Am J Trop Med Hyg. 2000, 62: 535-544.
PubMed Central
CAS
PubMed
Google Scholar
Read AF, Lynch P, Thomas MB: How to make evolution-proof insecticides for malaria control. PLoS Biol. 2009, 7: e1000058-
Article
PubMed Central
PubMed
Google Scholar
Rehner SA, Minnis AM, Sung G-H, Luangsa-ard JJ, Devotto L, Humber RA: Phylogeny and systematics of the anamorphic, entomopathogenic genus Beauveria. Mycologia. 2011, 103: 1055-1073. 10.3852/10-302.
Article
PubMed
Google Scholar
Blanford S, Jenkins NE, Christian R, Chan BHK, Nardini L, Osae M, Koekemoer L, Coetzee M, Read AF, Thomas MB: Storage and persistence of a candidate fungal biopesticide for use against adult malaria vectors. Malar J. 2012, 11: 354-10.1186/1475-2875-11-354.
Article
PubMed Central
PubMed
Google Scholar
Howard AF, N’guessan R, Koenraadt CJ, Asidi A, Farenhorst M, Akogbéto M, Thomas MB, Knols BG, Takken W: The entomopathogenic fungus Beauveria bassiana reduces instantaneous blood feeding in wild multi-insecticide-resistant Culex quinquefasciatus mosquitoes in Benin. West Africa Parasit Vectors. 2010, 3: 87-10.1186/1756-3305-3-87.
Article
PubMed
Google Scholar
Liu H, Skinner M, Brownbridge M, Parker BL: Characterization of Beauveria bassiana and Metarhizium anisopliae isolates for management of tarnished plant bug, Lygus lineolaris (Hemiptera: Miridae). J Invertebr Pathol. 2003, 82: 139-147. 10.1016/S0022-2011(03)00018-1.
Article
PubMed
Google Scholar
Varela A, Morales E: Characterization of some Beauveria bassiana isolates and their virulence toward the coffee berry borer Hypothenemus hampei. J Invertebr Pathol. 1996, 152: 147-152.
Article
Google Scholar
Talaei-Hassanloui R, Kharazi-Pakdel A, Goettel M, Mozaffari J: Variation in virulence of Beauveria bassiana isolates and its relatedness to some morphological characteristics. Biocontrol Sci Technol. 2006, 16: 525-534. 10.1080/09583150500532758.
Article
Google Scholar
Quesada-Moraga E, Vey A: Intra-specific variation in virulence and in vitro production of macromolecular toxins active against locust among Beauveria bassiana strains and effects of in vivo and in vitro passage on these factors intra-specific var. Biocontrol Sci Technol. 2003, 13: 323-340. 10.1080/0958315031000110346.
Article
Google Scholar
Zhang L-W, Liu Y-J, Yao J, Wang B, Huang B, Li Z-Z, Fan M-Z, Sun J-H: Evaluation of Beauveria bassiana (Hyphomycetes) isolates as potential agents for control of Dendroctonus valens. Insect Sci. 2011, 18: 209-216. 10.1111/j.1744-7917.2010.01361.x.
Article
Google Scholar
Farenhorst M, Knols BGJ: A novel method for standardized application of fungal spore coatings for mosquito exposure bioassays. Malar J. 2010, 9: 27-10.1186/1475-2875-9-27.
Article
PubMed Central
PubMed
Google Scholar
Davis R, de Serres F: Genetic and microbiological research techniques for Neurospora crassa. Methods Enzymol. 1970, 17: 79-143.
Article
Google Scholar
Scholte E-J, Ng’habi K, Kihonda J, Takken W, Paaijmans K, Abdulla S, Killeen GF, Knols BGJ: An entomopathogenic fungus for control of adult African malaria mosquitoes. Science. 2005, 308: 1641-1642. 10.1126/science.1108639.
Article
CAS
PubMed
Google Scholar
Mnyone LL, Kirby MJ, Lwetoijera DW, Mpingwa MW, Simfukwe ET, Knols BGJ, Takken W, Russell TL: Tools for delivering entomopathogenic fungi to malaria mosquitoes: effects of delivery surfaces on fungal efficacy and persistence. Malar J. 2010, 9: 246-10.1186/1475-2875-9-246.
Article
PubMed Central
PubMed
Google Scholar
Mitri C, Vernick KD: Anopheles gambiae pathogen susceptibility: the intersection of genetics, immunity and ecology. Curr Opin Microbiol. 2012, 15: 285-291. 10.1016/j.mib.2012.04.001.
Article
PubMed Central
PubMed
Google Scholar
Zhang S, Widemann E, Bernard G, Lesot A, Pinot F, Pedrini N, Keyhani NO: CYP52X1, representing new cytochrome P450 subfamily, displays fatty acid hydroxylase activity and contributes to virulence and growth on insect cuticular substrates in entomopathogenic fungus Beauveria bassiana. J Biol Chem. 2012, 287: 13477-13486. 10.1074/jbc.M111.338947.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pedrini N, Zhang S, Juárez MP, Keyhani NO: Molecular characterization and expression analysis of a suite of cytochrome P450 enzymes implicated in insect hydrocarbon degradation in the entomopathogenic fungus Beauveria bassiana. Microbiology. 2010, 156: 2549-2557. 10.1099/mic.0.039735-0.
Article
CAS
PubMed
Google Scholar
Luo X, Keyhani NO, Yu X, He Z, Luo Z, Pei Y, Zhang Y: The MAP kinase Bbslt2 controls growth, conidiation, cell wall integrity, and virulence in the insect pathogenic fungus Beauveria bassiana. Fungal Genet Biol. 2012, 49: 544-555. 10.1016/j.fgb.2012.05.002.
Article
CAS
PubMed
Google Scholar
Zhang S, Xia Y, Keyhani NO: Contribution of the gas1 gene of the entomopathogenic fungus Beauveria bassiana, encoding a putative glycosylphosphatidylinositol-anchored beta-1,3-glucanosyltransferase, to conidial thermotolerance and virulence. Appl Environ Microbiol. 2011, 77: 2676-2684. 10.1128/AEM.02747-10.
Article
PubMed Central
CAS
PubMed
Google Scholar