Carter R: Transmission blocking malaria vaccines. Vaccine. 2001, 19: 2309-2314. 10.1016/S0264-410X(00)00521-1.
Article
CAS
PubMed
Google Scholar
Kaslow DC: Transmission-blocking vaccines: uses and current status of development. Int J Parasitol. 1997, 27: 183-189. 10.1016/S0020-7519(96)00148-8.
Article
CAS
PubMed
Google Scholar
Kaslow DC: Transmission-blocking vaccines. Chem Immunol. 2002, 80: 287-307.
Article
CAS
PubMed
Google Scholar
Tsuboi T, Tachibana M, Kaneko O, Torii M: Transmission-blocking vaccine of vivax malaria. Parasitol Int. 2003, 52: 1-11. 10.1016/S1383-5769(02)00037-5.
Article
PubMed
Google Scholar
Carter R, Kaushal DC: Characterization of antigens on mosquito midgut stages of Plasmodium gallinaceum. III. Changes in zygote surface proteins during transformation to mature ookinete. Mol Biochem Parasitol. 1984, 13: 235-241. 10.1016/0166-6851(84)90116-6.
Article
CAS
PubMed
Google Scholar
Grotendorst CA, Kumar N, Carter R, Kaushal DC: A surface protein expressed during the transformation of zygotes of Plasmodium gallinaceum is a target of transmission-blocking antibodies. Infect Immun. 1984, 45: 775-777.
PubMed Central
CAS
PubMed
Google Scholar
Kumar N, Carter R: Biosynthesis of two stage-specific membrane proteins during transformation of Plasmodium gallinaceum zygotes into ookinetes. Mol Biochem Parasitol. 1985, 14: 127-139. 10.1016/0166-6851(85)90032-5.
Article
CAS
PubMed
Google Scholar
Vermeulen AN, Ponnudurai T, Beckers PJA, Verhave JP, Smits MA, Meuwissen JHET: Sequential expression of antigens on sexual stages of Plasmodium falciparum accessible to transmission-blocking antibodies in the mosquito. J Exp Med. 1985, 162: 1460-1476. 10.1084/jem.162.5.1460.
Article
CAS
PubMed
Google Scholar
Vermeulen AN, van Deursen J, Brakenhoff RH, Lensen THW, Ponnudurai T, Meuwissen JHET: Characterization of Plasmodium falciparum sexual stage antigens and their biosynthesis in synchronised gametocyte cultures. Mol Biochem Parasitol. 1986, 20: 155-163. 10.1016/0166-6851(86)90027-7.
Article
CAS
PubMed
Google Scholar
Fries HCW, Lamers MBAC, van Deursen J, Ponnudurai T, Meuwissen JHET: Biosynthesis of the 25-kDa protein in the macrogametes/zygotes of Plasmodium falciparum. Exp Parasitol. 1990, 71: 229-235. 10.1016/0014-4894(90)90025-8.
Article
CAS
PubMed
Google Scholar
Paton MG, Barker GC, Matsuoka H, Ramesar J, Janse CJ, Waters AP, Sinden RE: Structure and expression of a post-transcriptionally regulated malaria gene encoding a surface protein from the sexual stages of Plasmodium berghei. Mol Biochem Parasitol. 1993, 59: 263-275. 10.1016/0166-6851(93)90224-L.
Article
CAS
PubMed
Google Scholar
Fried M, Gwadz RW, Kaslow DC: Identification of two cysteine-rich, lipophilic proteins on the surface of Plasmodium knowlesi ookinetes: Pks20 and Pks24. Exp Parasitol. 1994, 78: 326-330. 10.1006/expr.1994.1034.
Article
CAS
PubMed
Google Scholar
Thompson J, Sinden RE: In situ detection of Pbs21 mRNA during sexual development of Plasmodium berghei. Mol Biochem Parasitol. 1994, 68: 189-196. 10.1016/0166-6851(94)90164-3.
Article
CAS
PubMed
Google Scholar
Vervenne RA, Dirks RW, Ramesar J, Waters AP, Janse CJ: Differential expression in blood stages of the gene coding for the 21- kilodalton surface protein of ookinetes of Plasmodium berghei as detected by RNA in situ hybridisation. Mol Biochem Parasitol. 1994, 68: 259-266. 10.1016/0166-6851(94)90170-8.
Article
CAS
PubMed
Google Scholar
Shaw MK, Thompson J, Sinden RE: Localization of ribosomal RNA and Pbs21-mRNA in the sexual stages of Plasmodium berghei using electron microscope in situ hybridization. Eur J Cell Biol. 1996, 71: 270-276.
CAS
PubMed
Google Scholar
Alejo-Blanco AR, Paez A, Gerold P, Dearsly AL, Margos G, Schwarz RT, Barker G, Rodriguez MC, Sinden RE: The biosynthesis and post-translational modification of Pbs21 an ookinete-surface protein of Plasmodium berghei. Mol Biochem Parasitol. 1999, 98: 163-173. 10.1016/S0166-6851(98)00162-5.
Article
CAS
Google Scholar
Hisaeda H, Stowers AW, Tsuboi T, Collins WE, Sattabongkot JS, Suwanabun N, Torii M, Kaslow DC: Antibodies to malaria vaccine candidates Pvs25 and Pvs28 completely block the ability of Plasmodium vivax to infect mosquitoes. Infect Immun. 2000, 68: 6618-6623. 10.1128/IAI.68.12.6618-6623.2000.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rodriguez MC, Gerold P, Dessens J, Kurtenbach K, Schwartz RT, Sinden RE, Margos G: Characterisation and expression of Pbs25, a sexual and sporogonic stage specific protein of Plasmodium berghei. Mol Biochem Parasitol. 2000, 110: 147-159. 10.1016/S0166-6851(00)00265-6.
Article
Google Scholar
Meis JFGM, Ponnudurai T: Ultrastructural studies on the interaction of Plasmodium falciparum ookinetes with the midgut epithelium of Anopheles stephensi mosquitoes. Parasitol Res. 1987, 73: 500-506. 10.1007/BF00535323.
Article
CAS
PubMed
Google Scholar
Sinden RE, Winger L, Carter EH, Hartley RH, Tirawanchai N, Davies CS, Moore J, Sluiters JF: Ookinete antigens of Plasmodium berghei: a light and electron-microscope immunogold study of expression of the 21 kDa determinant recognized by a transmission-blocking antibody. Proc R Soc Lond B Biol Sci. 1987, 230: 443-458.
Article
CAS
PubMed
Google Scholar
Sieber KP, Huber M, Kaslow D, Banks SM, Torii M, Aikawa M, Miller LH: The peritrophic membrane as a barrier: its penetration by Plasmodium gallinaceum and the effect of a monoclonal antibody to ookinetes. Exp Parasitol. 1991, 72: 145-156. 10.1016/0014-4894(91)90132-G.
Article
CAS
PubMed
Google Scholar
Lensen AHW, van Gemert GJA, Bolmer MG, Meis JFGM, Kaslow D, Meuwissen JHET, Ponnudurai T: Transmission blocking antibody of the Plasmodium falciparum zygote/ookinete surface protein Pfs25 also influences sporozoite development. Parasite Immunol. 1992, 14: 471-479.
Article
CAS
PubMed
Google Scholar
Simonetti AB, Billingsley PF, Winger LA, Sinden RE: Kinetics of expression of two major Plasmodium berghei antigens in the mosquito vector, Anopheles stephensi. J Eukaryot Microbiol. 1993, 40: 569-576.
Article
CAS
PubMed
Google Scholar
Tsuboi T, Cao YM, Hitsumoto Y, Yanagi T, Kanbara H, Torii M: Two antigens on zygotes and ookinetes of Plasmodium yoelii and Plasmodium berghei that are distinct targets of transmission-blocking immunity. Infect Immun. 1997, 65: 2260-2264.
PubMed Central
CAS
PubMed
Google Scholar
Adini A, Warburg A: Interaction of Plasmodium gallinaceum ookinetes and oocysts with extracellular matrix proteins. Parasitology. 1999, 119: 331-336. 10.1017/S0031182099004874.
Article
CAS
PubMed
Google Scholar
Siden-Kiamos I, Vlachou D, Margos G, Beetsma A, Waters AP, Sinden RE, Louis C: Distinct roles for Pbs21 and Pbs25 in the in vitro ookinete to oocyst transformation of Plasmodium berghei. J Cell Sci. 2000, 113: 3419-3426.
CAS
PubMed
Google Scholar
Tomas AM, Margos G, Dimopoulos G, van Lin LH, Koning-Ward TF, Sinha R, Lupetti P, Beetsma AL, Rodriguez MC, Karras M, Hager A, Mendoza J, Butcher GA, Kafatos F, Janse CJ, Waters AP, Sinden RE: P25 and P28 proteins of the malaria ookinete surface have multiple and partially redundant functions. EMBO J. 2001, 20: 3975-3983. 10.1093/emboj/20.15.3975.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vlachou D, Lycett G, Siden-Kiamos I, Blass C, Sinden RE, Louis C: Anopheles gambiae laminin interacts with the P25 surface protein of Plasmodium berghei ookinetes. Mol Biochem Parasitol. 2001, 112: 229-237. 10.1016/S0166-6851(00)00371-6.
Article
CAS
PubMed
Google Scholar
Arrighi RB, Hurd H: The role of Plasmodium berghei ookinete proteins in binding to basal lamina components and transformation into oocysts. Int J Parasitol. 2002, 32: 91-98. 10.1016/S0020-7519(01)00298-3.
Article
CAS
PubMed
Google Scholar
Winger LA, Tirawanchai N, Nicholas J, Carter HE, Smith JE, Sinden RE: Ookinete antigens of Plasmodium berghei. Appearance on the zygote surface of an Mr 21 kD determinant identified by transmission-blocking monoclonal antibodies. Parasite Immunol. 1988, 10: 193-207.
Article
CAS
PubMed
Google Scholar
Duffy PE, Pimenta P, Kaslow DC: Pgs28 belongs to a family of epidermal growth factor-like antigens that are targets of malaria transmission-blocking antibodies. J Exp Med. 1993, 177: 505-510. 10.1084/jem.177.2.505.
Article
CAS
PubMed
Google Scholar
Ranawaka G, Alejo-Blanco R, Sinden RE: The effect of transmission-blocking antibody ingested in primary and secondary bloodfeeds, upon the development of Plasmodium berghei in the mosquito vector. Parasitology. 1993, 107: 225-231.
Article
CAS
PubMed
Google Scholar
Ranawaka GRR, Alejo-Blanco AR, Sinden RE: Characterization of the effector mechanisms of a transmission-blocking antibody upon differentiation of Plasmodium berghei gametocytes into ookinetes in vitro. Parasitology. 1994, 109: 11-17.
Article
CAS
PubMed
Google Scholar
Ranawaka GRR, Fleck SL, Alejo-Blanco AR, Sinden RE: Characterization of the modes of action of anti-Pbs21 malaria transmission-blocking immunity: ookinete to oocyst differentiation in vivo. Parasitology. 1994, 109: 403-411.
Article
PubMed
Google Scholar
Duffy PE, Kaslow DC: A novel malaria protein, Pfs28, and Pfs25 are genetically linked and synergistic as falciparum malaria transmission-blocking vaccines. Infect Immun. 1997, 65: 1109-1113.
PubMed Central
CAS
PubMed
Google Scholar
Kaslow DC, Quakyi IA, Syin C, Raum MG, Keister DB, Coligan JE, McCutchan TF, Miller LH: A vaccine candidate from the sexual stage of human malaria that contains EGF-like domains. Nature. 1988, 333: 74-76. 10.1038/333074a0.
Article
CAS
PubMed
Google Scholar
Kaslow DC, Syin C, McCutchan TF, Miller LH: Comparison of the primary structure of the 25 kDa ookinete surface antigens of Plasmodium falciparum and Plasmodium gallinaceum reveal six conserved regions. Mol Biochem Parasitol. 1989, 33: 283-287. 10.1016/0166-6851(89)90090-X.
Article
CAS
PubMed
Google Scholar
Lal AA, Goldman IF, Campbell GH: Primary structure of the 25-kilodalton ookinete antigen from Plasmodium reichenowi. Mol Biochem Parasitol. 1990, 43: 143-145. 10.1016/0166-6851(90)90139-D.
Article
CAS
PubMed
Google Scholar
Tsuboi T, Cao YM, Kaslow DC, Shiwaku K, Torii M: Primary structure of a novel ookinete surface protein from Plasmodium berghei. Mol Biochem Parasitol. 1997, 85: 131-134. 10.1016/S0166-6851(96)02821-6.
Article
CAS
PubMed
Google Scholar
Tsuboi T, Kaslow DC, Cao YM, Shiwaku K, Torii M: Comparison of Plasmodium yoelii ookinete surface antigens with human and avian malaria parasite homologues reveals two highly conserved regions. Mol Biochem Parasitol. 1997, 87: 107-111. 10.1016/S0166-6851(97)00049-2.
Article
CAS
PubMed
Google Scholar
Tsuboi T, Kaslow DC, Gozar MM, Tachibana M, Cao YM, Torii M: Sequence polymorphism in two novel Plasmodium vivax ookinete surface proteins, Pvs25 and Pvs28, that are malaria transmission-blocking vaccine candidates. Mol Med. 1998, 4: 772-782.
PubMed Central
CAS
PubMed
Google Scholar
Taylor D, Cloonan N, Mann V, Cheng Q, Saul A: Sequence diversity in rodent malaria of the Pfs28 ookinete surface antigen homologs. Mol Biochem Parasitol. 2000, 110: 429-434. 10.1016/S0166-6851(00)00285-1.
Article
CAS
PubMed
Google Scholar
Tachibana M, Tsuboi T, Templeton TJ, Kaneko O, Torii M: Presence of three distinct ookinete surface protein genes, Pos25, Pos28- 1, and Pos28-2, in Plasmodium ovale. Mol Biochem Parasitol. 2001, 113: 341-344. 10.1016/S0166-6851(01)00231-6.
Article
CAS
PubMed
Google Scholar
Han YS, Thompson J, Kafatos FC, Barillas-Mury C: Molecular interactions between Anopheles stephensi midgut cells and Plasmodium berghei: the time bomb theory of ookinete invasion of mosquitoes. EMBO J. 2000, 19: 6030-6040. 10.1093/emboj/19.22.6030.
Article
PubMed Central
CAS
PubMed
Google Scholar
Danielli A, Barillas-Mury C, Kumar S, Kafatos F, Loukeris TG: Overexpression and altered nucleocytoplasmic distribution of Anopheles ovalbumin-like SRPN10 serpins in Plasmodium-infected midgut cells. Cell Microbiol. 2005, 7: 181-190.
Article
CAS
PubMed
Google Scholar
Meis JFGM, Pool G, van Gemert GJ, Lensen AHW, Ponnudurai T, Meuwissen JHET: Plasmodium falciparum ookinetes migrate intercellularly through Anopheles stephensi midgut epithelium. Parasitol Res. 1989, 76: 13-19. 10.1007/BF00931065.
Article
CAS
PubMed
Google Scholar
Zieler H, Dvorak JA: Invasion in vitro of mosquito midgut cells by the malaria parasite proceeds by a conserved mechanism and results in death of the invaded midgut cells. Proc Natl Acad Sci U S A. 2000, 97: 11516-11521. 10.1073/pnas.97.21.11516.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vlachou D, Zimmermann T, Cantera R, Janse CJ, Waters AP, Kafatos FC: Real-time, in vivo analysis of malaria ookinete locomotion and mosquito midgut invasion. Cell Microbiol. 2004, 6: 671-685. 10.1111/j.1462-5822.2004.00394.x.
Article
CAS
PubMed
Google Scholar
Luckhart S, Vodovotz Y, Cui L, Rosenberg R: The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide. Proc Natl Acad Sci U S A. 1998, 95: 5700-5705. 10.1073/pnas.95.10.5700.
Article
PubMed Central
CAS
PubMed
Google Scholar
Danielli A, Kafatos FC, Loukeris TG: Cloning and characterization of four Anopheles gambiae serpin isoforms, differentially induced in the midgut by Plasmodium berghei invasion. J Biol Chem. 2003, 278: 4184-4193. 10.1074/jbc.M208187200.
Article
CAS
PubMed
Google Scholar
Baton LA, Ranford-Cartwright LC: How do malaria ookinetes cross the mosquito midgut wall?. Trends Parasitol. 2005, 21: 22-28. 10.1016/j.pt.2004.11.001.
Article
PubMed
Google Scholar
Baton LA, Ranford-Cartwright LC: Plasmodium falciparum ookinete invasion of the midgut epithelium of Anopheles stephensi is consistent with the Time Bomb model. Parasitology. 2004, 129: 663-676. 10.1017/S0031182004005979.
Article
CAS
PubMed
Google Scholar
Syafruddin, Arakawa R, Kamimura K, Kawamoto F: Penetration of the mosquito midgut wall by the ookinetes of Plasmodium yoelii nigeriensis. Parasitol Res. 1991, 77: 230-236. 10.1007/BF00930863.
Article
CAS
PubMed
Google Scholar
Becker-Feldman H, Maier WA, Seitz HM: Electron microscope observations on the pathology of the midgut epithelial cells of Anopheles stephensi after infection with Plasmodium yoelii nigeriensis [abstract]. Trop Med Parasitol. 1985, 36: 5-6-
Google Scholar
Paskewitz SM, Brown MR, Lea AO, Collins FH: Ultrastructure of the encapsulation of Plasmodium cynomolgi (B strain) on the midgut of a refractory strain of Anopheles gambiae. J Parasitol. 1988, 74: 432-439.
Article
CAS
PubMed
Google Scholar
Torii M, Nakamura K, Sieber KP, Miller LH, Aikawa M: Penetration of the mosquito (Aedes aegypti) midgut wall by the ookinetes of Plasmodium gallinaceum. J Protozool. 1992, 39: 449-454.
Article
CAS
PubMed
Google Scholar
Kadota K, Ishino T, Matsuyama T, Chinzei Y, Yuda M: Essential role of membrane-attack protein in malarial transmission to mosquito host. Proc Natl Acad Sci U S A. 2004, 101: 16310-16315. 10.1073/pnas.0406187101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Collins FH, Sakai RK, Vernick KD, Paskewitz S, Seeley DC, Miller LH, Collins WE, Campbell CC, Gwadz RW: Genetic selection of a Plasmodium-refractory strain of the malaria vector Anopheles gambiae. Science. 1986, 234: 607-610.
Article
CAS
PubMed
Google Scholar
Blandin S, Shiao SH, Moita LF, Janse CJ, Waters AP, Kafatos FC, Levashina EA: Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector Anopheles gambiae. Cell. 2004, 116: 661-670. 10.1016/S0092-8674(04)00173-4.
Article
CAS
PubMed
Google Scholar
Dessens JT, Beetsma AL, Dimopoulos G, Wengelnik K, Crisanti A, Kafatos FC, Sinden RE: CTRP is essential for mosquito infection by malaria ookinetes. EMBO J. 1999, 18: 6221-6227. 10.1093/emboj/18.22.6221.
Article
PubMed Central
CAS
PubMed
Google Scholar