This study demonstrates the feasibility of training community health workers in the use of malaria RDTs in a setting of high malaria endemicity with scarce human and technological resources for health, exacerbated by violent conflict and human insecurity. In a single day, community health workers were trained to use and interpret a commercially available RDT, demonstrating appropriate knowledge and skills at the end of the training session. They subsequently demonstrated competence in point-of-care parasitological diagnosis of malaria in a group of 357 febrile children under field conditions. Following the field implementation of rapid diagnostic testing, CHWs were uniformly positive about the utility and ease of use of RDTs in their setting. On the other hand, cost remains a major barrier to the use of RDTs in areas of high malaria prevalence, as demonstrated by a simple decision analysis.
This study is noteworthy for its setting in a zone of ongoing human insecurity. Over more than a decade, a civil and international conflagration has claimed over 3.9 million lives in the DRC, more than any other conflict since World War II[4]. Despite an official end to the fighting, Mai Mai rebel insurgents continue to destabilize areas in the east of the country and the current mortality rate remains well above pre-war levels and above levels in surrounding sub-Saharan Africa[3]. Most deaths are not due to the direct effects of violence, but due to preventable, treatable infectious diseases, including malaria, which is the primary cause of mortality in the DRC[3]. In this context, CHWs may play an especially important role in delivering health care to abandoned and displaced populations with little access to formal health services. Relative to previous reports on the use of RDTs by CHWs, the present study goes beyond evaluation of CHW training[13] and description of treatment programmes[11, 14]. This study reports on the implementation of rapid diagnostic testing by CHWs in a cohort of febrile children under field conditions in a remote village, along with a survey of CHWs views and attitudes toward RDTs after this practical trial period. Moreover, this study highlights important obstacles to the use of RDTs in practice in this setting, particularly the cost-effectiveness in a zone of high prevalence.
The principal barrier to the utilization of RDTs in community-based malaria care is the sustainable purchase and supply of RDTs. In the decision analysis presented, health service payers would have to value the cost of saving one unnecessary treatment at $8.79, which represents eight times the cost of an ACT treatment course, and 60% of the annual per capita public expenditure on health care ($15/yr)[19]. This cost is unlikely to be acceptable to public health care administrators or patient families. Previously, detailed decision analyses have been published which support the finding that RDTs are not cost effective in settings of high malaria prevalence[17]. In one recent report, the probability of RDTs being cost effective is less than 50% beyond a prevalence of 80%, as observed in the present study[17]. Likewise, RDTs were cost-saving only below a prevalence threshold of 52-55% in other analyses[18, 20]. Few of these reports consider the implications of their models at high malaria prevalence, although the findings demonstrate the relevance of this situation in tropical Africa. Thus, despite optimism for the utility of RDTs in resource-limited endemic settings, at high malaria prevalence, presumptive treatment appears to be a more acceptable management strategy, based on the elevated cost/utility ratio of RDTs.
As in this cohort of febrile children in tropical Congo, previous studies have documented a high prevalence of parasitaemia among children with fever in holoendemic zones. Test positivity among febrile children in excess of 80% has been documented following a flood disaster in Mozambique (81%)[21] and in the DRC (82%)[22]. Furthermore, it is well-recognized that test positivity persists after parasite clearance for four weeks or more [22–24], such that children with infection in the past month will also test positive. Light microscopy of Giemsa-stained peripheral smears was used to validate this finding and confirmed a high (88%) rate of parasitaemia among febrile children in this area of the DRC. Associated signs and symptoms were non-specific (Table 1), yet consistent with a diagnosis of malaria (e.g., headache, fatigue, chills, and poor feeding). On the other hand, in some cases the diagnosis of malaria may have been incidental, given the likelihood of other common causes of childhood fever such as viral upper respiratory tract infection along with compatible symptoms in this cohort (e.g., coryza). This highlights a more general need for diagnostic tools appropriate to the rural African context for infectious diseases beyond malaria alone. In addition to cost, other impediments to the widespread use of RDTs by CHWs include concerns about transmission of blood-borne infections including HIV. However, this and other studies[13] have demonstrated that CHWs can be trained to safely perform blood sampling for the RDT. Gloves, lancets and proper disposal should be incorporated into training modules and factored into the cost of RDT programmes. Variation in test sensitivity due to damage during transportation and/or use at high temperature or humidity[7] constitutes another challenge to the reliable use of RDTs in remote communities, highlighting the need for quality control measures (e.g., microscopy confirmation of negative test results), although this strategy poses challenges of its own in severely resource-restricted areas. Acceptability of RDTs versus microscopy or clinical diagnosis may represent an additional barrier, although CHWs were uniformly positive about the utility of RDTs when surveyed following the field trial.
Although RDTs appear to be prohibitively expensive in this context, the mobilization of CHWs for malaria management and control remains a relevant strategy. In this study, 12 highly motivated CHWs who had previous experience managing children with malaria (although only two had previously used a RDT), demonstrated efficient integration of knowledge and skills in malaria diagnosis and treatment, and were rapidly mobilized to treat a large number of febrile children in a remote setting. Access to government sponsored health services may be as low as 50% in this and similar areas of sub-Saharan Africa[5], emphasizing the need for community based interventions. CHWs have proven valuable in other geographic areas such as Cambodia, where a national programme of malaria health workers currently provide accessible malaria diagnosis and treatment in over 300 villages[11]. In the DRC, where violent conflict has severely disrupted government health infrastructure and has led to the displacement of large numbers of people in a zone of high malaria transmission, CHWs may represent a valuable human resource to address the intolerable burden of malaria, currently the number one cause of childhood mortality[3].
Limitations of this study include the relatively small sample size of CHWs from a single geographic area, and the short time span (one week) during which children were diagnosed and treated for malaria. Although a study involving multiple sites over a prolonged period might provide more generalizable information, these results nonetheless underline some important considerations for the roll-out of RDTs in other areas, particularly the prevalence of malaria among the target population for testing. During dry season, or in areas where malaria prevalence is lower, RDTs may be more cost-effective than determined in this study. With respect to survey questionnaires on the utility of the training session and the acceptability of RDTs, we cannot exclude the possibility of "social courtesy bias" influencing CHW to give positive feedback, although surveys were conducted anonymously to minimize this potential bias. Despite the lack of formal medical or nursing training, the CHWs in this study were relatively experienced in malaria management, which may explain their ability to rapidly incorporate RDTs into their clinical practice. Thus, successes in training CHWs in this context should not necessarily be extrapolated to less experienced personnel. RDT test performance characteristics (sensitivity and specificity) were not assessed against a gold standard, because this has been extensively documented in previous studies (reviewed in [8]).
In summary, this study demonstrates the feasibility of training CHWs in the use of RDTs for malaria diagnosis and management among febrile children in a remote community affected by violent conflict. This study illustrates the importance of considering local factors (e.g., malaria prevalence) in assessing the appropriateness of RDTs for remote and vulnerable populations.