Objectives
The objectives of the SMS for Life pilot were three-fold: (1) to demonstrate that visibility of weekly stock levels of key anti-malarial medicines at the health facility level will promote action to eliminate and/or reduce stock-outs (2) to demonstrate that a state-of-the-art data gathering infrastructure can be made available via simple tools such as SMS and mobile telephones in remote locations in sub-Saharan Africa (3) to demonstrate the effectiveness of a public-private partnership model.
Location
Of the 131 districts in Tanzania, three rural districts (Lindi Rural, Ulanga and Kigoma Rural) were selected by the NMCP for inclusion in the pilot, covering a total population of 1.2 million. The selected districts met all four criteria for inclusion. First, the districts were to differ in terms of level of health service delivery and access, with the aim of providing a broadly representative sample of the entire country. Lindi Rural is an 'average' district. Ulanga is a challenging district in terms of staff shortages, skill level and remote location. Kigoma Rural also presents problems, due to its large geographic size and long distances between the Zonal Store and remote health facilities. Second, the districts were all to be in different regions of the country, and supplied by different Zonal Stores. Third, all districts were to be malaria endemic with malaria the most common cause of death. Fourth, selected districts were not to be involved in other pilot projects.
Lindi Rural, Ulanga and Kigoma Rural districts included 48, 30 and 51 health facilities, respectively i.e. 129 health facilities in total. The Lindi Rural and Kigoma Rural districts operate anti-malarial supply using a 'pull' system via ILS. The Ulanga district is undergoing a transition from a 'push' system to the 'pull' system.
Duration and scope of the SMS for Life pilot
The pilot study was 21 weeks in duration. This period was chosen because it covered two quarterly order cycles and five monthly delivery cycles. Data collection started on 1st October 2009 and ended on 25th February 2010.
The system covered stocks of artemether-lumefantrine (AL, Coartem®, Novartis Pharma AG, Basel, Switzerland) and injectable quinine (provided by multiple manufacturers). Stocks of four different dosage packs of AL were included: 'yellow' packs used for babies weighing 5 kg to < 15 kg, 'blue' packs for children weighing 15 kg to < 25 kg, 'red' packs for children weighing 25 kg to < 35 kg and 'green' packs for children weighing 35 kg or more and for adults.
The SMS for Life system
The system consists of two components: an SMS management tool and a web-based reporting tool.
SMS management tool (Figure 1)
The SMS application stores a single registered mobile telephone number for one healthcare worker at each health facility. Once a week, a stock request is sent by SMS to each of these telephone numbers. Stock messages are sent back in reply using a free short code number at zero cost to the healthcare worker i.e. telephones do not need to be in credit to reply. A standard message format is used to capture stock quantities of AL and quinine, and formatting errors are handled through follow-up SMS messages to the facility.
Step 1
A personal mobile telephone number for one healthcare worker at each health facility in the three pilot districts was obtained during training sessions and registered with the SMS application. Only stock count messages from registered personal mobile telephone numbers are accepted.
Step 2
Every Thursday at 14:00 an SMS message is sent to all registered health facility workers requesting stock counts.
Step 3
Full boxes of AL in the storeroom of each facility are counted, and individual quinine injectable vials are counted in the storeroom and dispensary (the difference in accounting methodologies was at the request of the NMCP).
Step 4
An SMS message is composed by the health facility worker, comprising a code for each type of medicine and the quantity, following an agreed format.
Step 5
The heath facility worker either replies to the stock request SMS or sends a new SMS using the free short code number. If the message is sent in an incorrect format, the system automatically informs the sender. After three unsuccessful attempts, the district management is informed and asked to intervene.
Step 6
The SMS system sends an automatic reminder to all health facilities that have not replied by Friday at 14:00.
Step 7
The SMS system credits the healthcare worker's mobile telephone with a fixed amount of money (1000-1500 TZS, depending on the district) for personal use if the stock count reply is received before 17:00 on Friday. Late SMS replies are accepted until 13:00 on the following Thursday, but no credit is applied to mobile telephones for late replies.
Step 8
The system provides a weekly status report to the DMO indicating (a) which health facilities did not provide a stock count and (b) which health facilities have a stock-out.
Web-based reporting tool
The data captured from the SMS stock count messages is made available via a secure website for which access requires a unique user identification and password. Access is provided to the DMO and his/her staff in each participating district, the relevant Regional Medical Officers and their staff, the project team, the NMCP and the Medical Stores Department including the Zonal Stores affiliated with each district. The website provides (a) current and historical data on AL and quinine injectable stock levels at the health facility and district level (b) Google mapping of district health facilities with stock levels overlays and stock-out alerts (c) SMS messaging statistics e.g. errors, received messages and (d) usage statistics.
District-level management
The DMO appointed one person in the district to redistribute medicines in response to stock-outs identified by the SMS for Life system. Redistribution could be undertaken by telephoning health facilities with stock-outs to inform them of excess stock in a neighboring health facility, or by contacting the Malarial Focal Person in the district to request that they move stock from a health facility with a high stock level to a neighboring facility.
Participant training
Training was provided at three levels:
-
(i)
At a national level, core project and system training was provided at a half-day session for NMCP, Medical Stores Department and additional staff to explain the project objectives, use of the reporting system and action to be taken based on stock count information provided.
-
(ii)
At the district level, a half-day training session was provided for the DMO, Malaria Focal Person, District Pharmacist and Zonal Store representative for each district. Training covered use of the reporting system, action to be taken based on stock count information provided, and education and assistance for health facility workers.
-
(iii)
At the health facility level, a half-day training session was provided by the NMCP in-country project lead for health facility workers within each district, in the local language. The session included registration of personal mobile telephone numbers, the procedure for counting stock, composition of the SMS stock count messages, live simulations of counting, composing and sending SMS messages, and best practice for stock management and storage of anti-malarials.
Monitoring and evaluation
Weekly stock reports, stock-out statistics, error rates, deliveries and system access were monitored daily online during the 21-week pilot study. Surveillance visits were undertaken for 116/129 health facilities (90.0%) at least once to validate the accuracy of stock count data provided by health facility workers.
District management team members were interviewed towards the end of the pilot study to assess stock movement during the study, obtain feedback on use and ease of access to the data system and on use of the registration/de-registration function for health facility mobile telephone numbers, seek views on training and training materials, and elicit opinions on the SMS for Life project versus other stock management practices and the potential for future implementation of the scheme. Throughout the project, information on every order and delivery of AL or quinine injectable from Zonal Stores was collected.
Project partnership and contributions
The project partnership had a fixed-term commitment of less than one year, with no centralized budget, formal contract or memorandum of understanding. The Tanzanian Ministry of Health and Social Welfare, The Roll Back Malaria Partnership, Novartis Pharma AG, Vodafone and IBM took part in the pilot project. Each partner funded their own activities.
The NMCP in Tanzania, operating as part of the Ministry of Health and Social Welfare, was the owner and main user of the SMS for Life pilot and coordinated all project activities in the country i.e. planning, implementation and evaluation, including provision of a project leader and vehicles with drivers. The Roll Back Malaria Partnership provided project oversight, including the work of the steering committee, and led advocacy activities. Novartis initiated and led the pilot, defining the solution, sourcing partners, establishing the steering committee, and providing the necessary resources and funding (e.g. to support health professional training). Vodafone and its partner, Matssoft, supported the design, funding and development of the system application and the implementation of the technical solution, and funded all technical operational costs of the pilot. IBM supplied management resource support to the project and provided an on-line collaboration tool 'Lotus Live', which allowed all the project partners to coordinate their inputs across company networks.