Dietz K: Density-dependence in parasite transmission dynamics. Parasitol Today. 1988, 4: 91-97. 10.1016/0169-4758(88)90034-8.

Article
CAS
PubMed
Google Scholar

Sinden RE, Dawes EJ, Alavi Y, Waldock J, Finney O, Mendoza J, Butcher GA, Andrews L, Hill AV, Gilbert SC, Basáñez MG: Progression of *Plasmodium berghei* through *Anopheles stephensi* is density-dependent. PLoS Pathog. 2007, 3: e195-10.1371/journal.ppat.0030195.

Article
PubMed Central
PubMed
Google Scholar

Harrington LC, Vermeylen F, Jones JJ, Kitthawee S, Sithiprasasna R, Edman JD, Scott TW: Age-dependent survival of the dengue vector *Aedes aegypti* (Diptera: Culicidae) demonstrated by simultaneous release-recapture of different age cohorts. J Med Entomol. 2008, 45: 307-313. 10.1603/0022-2585(2008)45[307:ASOTDV]2.0.CO;2.

Article
PubMed
Google Scholar

Styer LM, Carey JR, Wang JL, Scott TW: Mosquitoes do senesce: departure from the paradigm of constant mortality. Am J Trop Med Hyg. 2007, 76: 111-117.

PubMed Central
PubMed
Google Scholar

Anderson RA, Knols BG, Koella JC: *Plasmodium falciparum* sporozoites increase feeding-associated mortality of their mosquito hosts *Anopheles gambiae s.l*. Parasitology. 2000, 120: 329-333. 10.1017/S0031182099005570.

Article
PubMed
Google Scholar

Ferguson HM, Read AF: Why is the effect of malaria parasites on mosquito survival still unresolved?. Trends Parasitol. 2002, 18: 256-261. 10.1016/S1471-4922(02)02281-X.

Article
PubMed
Google Scholar

Dawes EJ, Churcher TS, Zhuang S, Sinden RE, Basáñez MG: *Anopheles* mortality is both age- and *Plasmodium*-density dependent: implications for malaria transmission. Malar J. 2009, 8: 228-10.1186/1475-2875-8-228.

Article
PubMed Central
PubMed
Google Scholar

Poudel SS, Newman RA, Vaughan JA: Rodent *Plasmodium*: population dynamics of early sporogony within *Anopheles stephensi* mosquitoes. J Parasitol. 2008, 94: 999-1008. 10.1645/GE-1407.1.

Article
PubMed
Google Scholar

Vaughan JA: Population dynamics of *Plasmodium* sporogony. Trends Parasitol. 2007, 23: 63-70. 10.1016/j.pt.2006.12.009.

Article
PubMed
Google Scholar

Barnes KI, White NJ: Population biology and antimalarial resistance: The transmission of antimalarial drug resistance in *Plasmodium falciparum*. Acta Trop. 2005, 94: 230-240.

Article
CAS
PubMed
Google Scholar

Drakeley CJ, Secka I, Correa S, Greenwood BM, Targett GA: Host haematological factors influencing the transmission of *Plasmodium falciparum* gametocytes to *Anopheles gambiae s.s*. mosquitoes. Trop Med Int Health. 1999, 4: 131-138. 10.1046/j.1365-3156.1999.00361.x.

Article
CAS
PubMed
Google Scholar

Paul RE, Bonnet S, Boudin C, Tchuinkam T, Robert V: Aggregation in malaria parasites places limits on mosquito infection rates. Infect Genet Evol. 2007, 7: 577-586. 10.1016/j.meegid.2007.04.004.

Article
CAS
PubMed
Google Scholar

Pichon G, Robert V, Tchuinkam T, Mulder B, Verhave JP: A quantitative analysis of the distribution of *Plasmodium falciparum* oocysts in *Anopheles gambiae*. Parasite. 1996, 3: 161-167.

Article
Google Scholar

Stepniewska K, Price RN, Sutherland CJ, Drakeley CJ, von Seidlein L, Nosten F, White NJ: *Plasmodium falciparum* gametocyte dynamics in areas of different malaria endemicity. Malar J. 2008, 7: 249-10.1186/1475-2875-7-249.

Article
PubMed Central
PubMed
Google Scholar

Kebaier C, Voza T, Vanderberg J: Kinetics of mosquito-injected *Plasmodium* sporozoites in mice: fewer sporozoites are injected into sporozoite-immunized mice. PLoS Pathog. 2009, 5: e1000399-10.1371/journal.ppat.1000399.

Article
PubMed Central
PubMed
Google Scholar

Medica DL, Sinnis P: Quantitative dynamics of *Plasmodium yoelii* sporozoite transmission by infected anopheline mosquitoes. Infect Immun. 2005, 73: 4363-4369. 10.1128/IAI.73.7.4363-4369.2005.

Article
PubMed Central
CAS
PubMed
Google Scholar

Saul A: Mosquito stage, transmission blocking vaccines for malaria. Curr Opin Infect Dis. 2007, 20: 476-481. 10.1097/QCO.0b013e3282a95e12.

Article
PubMed
Google Scholar

Koella JC, Lorenz L, Bargielowski I: Microsporidians as evolution-proof agents of malaria control?. Adv Parasitol. 2009, 68: 315-327. full_text.

Article
PubMed
Google Scholar

Christophides GK: Transgenic mosquitoes and malaria transmission. Cell Microbiol. 2005, 7: 325-333. 10.1111/j.1462-5822.2005.00495.x.

Article
CAS
PubMed
Google Scholar

Carter R, Mendis KN, Miller LH, Molineaux L, Saul A: Malaria transmission-blocking vaccines--how can their development be supported?. Nat Med. 2000, 6: 241-244. 10.1038/73062.

Article
CAS
PubMed
Google Scholar

Beier JC, Onyango FK, Ramadhan M, Koros JK, Asiago CM, Wirtz RA, Koech DK, Roberts CR: Quantitation of malaria sporozoites in the salivary glands of wild Afrotropical *Anopheles*. Med Vet Entomol. 1991, 5: 63-70. 10.1111/j.1365-2915.1991.tb00522.x.

Article
CAS
PubMed
Google Scholar

Medley GF, Sinden RE, Fleck S, Billingsley PF, Tirawanchai N, Rodriguez MH: Heterogeneity in patterns of malarial oocyst infections in the mosquito vector. Parasitology. 1993, 106: 441-449. 10.1017/S0031182000076721.

Article
PubMed
Google Scholar

Vaughan JA, Noden BH, Beier JC: Sporogonic development of cultured *Plasmodium falciparum* in six species of laboratory-reared *Anopheles mosquitoes*. Am J Trop Med Hyg. 1994, 51: 233-243.

CAS
PubMed
Google Scholar

Churcher TS, Ferguson NM, Basáñez MG: Density dependence and overdispersion in the transmission of helminth parasites. Parasitology. 2005, 131: 121-132. 10.1017/S0031182005007341.

Article
CAS
PubMed
Google Scholar

Jahan N, Docherty PT, Billingsley PF, Hurd H: Blood digestion in the mosquito, *Anopheles stephensi:* the effects of *Plasmodium yoelii nigeriensis* on midgut enzyme activities. Parasitology. 1999, 119: 535-541. 10.1017/S0031182099005090.

Article
CAS
PubMed
Google Scholar

Beier JC: Malaria parasite development in mosquitoes. Annu Rev Entomol. 1998, 43: 519-543. 10.1146/annurev.ento.43.1.519.

Article
CAS
PubMed
Google Scholar

Hurd H, Hogg JC, Renshaw M: Interactions between bloodfeeding, fecundity and infection in mosquitos. Parasitology Today. 1995, 11: 411-416. 10.1016/0169-4758(95)80021-2.

Article
Google Scholar

Dimopoulos G, Christophides GK, Meister S, Schultz J, White KP, Barillas-Mury C, Kafatos FC: Genome expression analysis of *Anopheles gambiae*: responses to injury, bacterial challenge, and malaria infection. Proc Natl Acad Sci USA. 2002, 99: 8814-8819. 10.1073/pnas.092274999.

Article
PubMed Central
CAS
PubMed
Google Scholar

Burnham K, Anderson D: Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach. 2004, New York: Springer, 2

Chapter
Google Scholar

Saul A, Fay MP: Human immunity and the design of multi-component, single target vaccines. PLoS One. 2007, 2: e850-10.1371/journal.pone.0000850.

Article
PubMed Central
PubMed
Google Scholar

Saul A: Efficacy model for mosquito stage transmission blocking vaccines for malaria. Parasitology. 2008, 135: 1497-1506. 10.1017/S0031182008000280.

Article
CAS
PubMed
Google Scholar

Saul AJ, Graves PM, Kay BH: A cyclical feeding model for pathogen transmission and its application to determine vectorial capacity from vector infection-rates. J Appl Ecol. 1990, 27: 123-133. 10.2307/2403572.

Article
Google Scholar

Smith DL, McKenzie FE: Statics and dynamics of malaria infection in *Anopheles* mosquitoes. Malar J. 2004, 3: 13-10.1186/1475-2875-3-13.

Article
PubMed Central
PubMed
Google Scholar

Okell LC, Ghani AC, Lyons E, Drakeley CJ: Submicroscopic infection in *Plasmodium falciparum*-endemic populations: a systematic review and meta-analysis. J Infect Dis. 2009, 200: 1509-1517. 10.1086/644781.

Article
PubMed
Google Scholar

Schneider P, Bousema JT, Gouagna LC, Otieno S, van de Vegte-Bolmer M, Omar SA, Sauerwein RW: Submicroscopic *Plasmodium falciparum* gametocyte densities frequently result in mosquito infection. Am J Trop Med Hyg. 2007, 76: 470-474.

PubMed
Google Scholar

Rosenberg R, Koontz LC, Carter R: Infection of *Aedes aegypti* with zygotes of *Plasmodium gallinaceum* fertilized in vitro. J Parasitol. 1982, 68: 653-656. 10.2307/3280924.

Article
CAS
PubMed
Google Scholar

Drakeley CJ, Carneiro I, Reyburn H, Malima R, Lusingu JP, Cox J, Theander TG, Nkya WM, Lemnge MM, Riley EM: Altitude-dependent and -independent variations in *Plasmodium falciparum* prevalence in northeastern Tanzania. J Infect Dis. 2005, 191: 1589-1598. 10.1086/429669.

Article
PubMed
Google Scholar

Adjuik M, Babiker A, Garner P, Olliaro P, Taylor W, White N: Artesunate combinations for treatment of malaria: meta-analysis. Lancet. 2004, 363: 9-17. 10.1016/S0140-6736(03)15162-8.

Article
CAS
PubMed
Google Scholar

Draper CC: Observations on the infectiousness of gametocytes in hyperendemic malaria. Trans R Soc Trop Med Hyg. 1953, 47: 160-165. 10.1016/0035-9203(53)90072-8.

Article
CAS
PubMed
Google Scholar

Jeffery GM, Eyles DE: Infectivity to mosquitoes of *Plasmodium falciparum* as related to gametocyte density and duration of infection. Am J Trop Med Hyg. 1955, 4: 781-789.

CAS
PubMed
Google Scholar

Tchuinkam T, Mulder B, Dechering K, Stoffels H, Verhave JP, Cot M, Carnevale P, Meuwissen JH, Robert V: Experimental infections of *Anopheles gambiae* with *Plasmodium falciparum* of naturally infected gametocyte carriers in Cameroon: factors influencing the infectivity to mosquitoes. Trop Med Parasitol. 1993, 44: 271-276.

CAS
PubMed
Google Scholar

Naotunne TD, Rathnayake KD, Jayasinghe A, Carter R, Mendis KN: *Plasmodium cynomolgi*: serum-mediated blocking and enhancement of infectivity to mosquitoes during infections in the natural host, Macaca sinica. Exp Parasitol. 1990, 71: 305-313. 10.1016/0014-4894(90)90035-B.

Article
CAS
PubMed
Google Scholar

Peiris JS, Premawansa S, Ranawaka MB, Udagama PV, Munasinghe YD, Nanayakkara MV, Gamage CP, Carter R, David PH, Mendis KN: Monoclonal and polyclonal antibodies both block and enhance transmission of human *Plasmodium vivax* malaria. Am J Trop Med Hyg. 1988, 39: 26-32.

CAS
PubMed
Google Scholar

Tirawanchai N, Winger LA, Nicholas J, Sinden RE: Analysis of immunity induced by the affinity-purified 21-kilodalton zygote-ookinete surface antigen of *Plasmodium berghei*. Infect Immun. 1991, 59: 36-44.

PubMed Central
CAS
PubMed
Google Scholar

Chowdhury DR, Angov E, Kariuki T, Kumar N: A potent malaria transmission blocking vaccine based on codon harmonized full length Pfs48/45 expressed in *Escherichia coli*. PLoS One. 2009, 4: e6352-10.1371/journal.pone.0006352.

Article
PubMed Central
PubMed
Google Scholar

Miura K, Keister DB, Muratova OV, Sattabongkot J, Long CA, Saul A: Transmission-blocking activity induced by malaria vaccine candidates Pfs25/Pvs25 is a direct and predictable function of antibody titer. Malar J. 2007, 6: 107-10.1186/1475-2875-6-107.

Article
PubMed Central
PubMed
Google Scholar

Koella JC, Sorensen FL, Anderson RA: The malaria parasite, *Plasmodium falciparum*, increases the frequency of multiple feeding of its mosquito vector, Anopheles gambiae. Proc Biol Sci. 1998, 265: 763-768. 10.1098/rspb.1998.0358.

Article
PubMed Central
CAS
PubMed
Google Scholar

Anderson RA, Koella JC, Hurd H: The effect of *Plasmodium yoelii nigeriensis* infection on the feeding persistence of *Anopheles stephensi* Liston throughout the sporogonic cycle. Proc Biol Sci. 1999, 266: 1729-1733. 10.1098/rspb.1999.0839.

Article
PubMed Central
CAS
PubMed
Google Scholar

Hogg JC, Hurd H: Malaria-induced reduction of fecundity during the first gonotrophic cycle of *Anopheles stephensi* mosquitoes. Med Vet Entomol. 1995, 9: 176-180. 10.1111/j.1365-2915.1995.tb00175.x.

Article
CAS
PubMed
Google Scholar

Mitri C, Thiery I, Bourgouin C, Paul RE: Density-dependent impact of the human malaria parasite *Plasmodium falciparum* gametocyte sex ratio on mosquito infection rates. Proc Biol Sci. 2009, 276: 3721-3726. 10.1098/rspb.2009.0962.

Article
PubMed Central
CAS
PubMed
Google Scholar

Basáñez MG, Remme JHF, Alley ES, Bain O, Shelley AJ, Medley GF, Anderson RM: Density-dependent processes in the transmission of human onchocerciasis: Relationship between the numbers of microfilariae ingested and successful larval development in the simuliid vector. Parasitology. 1995, 110: 409-427. 10.1017/S0031182000064751.

Article
PubMed
Google Scholar

Basáñez MG, Townson H, Williams JR, Frontado H, Villamizar NJ, Anderson RM: Density-dependent processes in the transmission of human onchocerciasis: Relationship between microfilarial intake and mortality of the simuliid vector. Parasitology. 1996, 113: 331-355. 10.1017/S003118200006649X.

Article
PubMed
Google Scholar

Krishnamoorthy K, Subramanian S, Van Oortmarssen GJ, Habbema JD, Das PK: Vector survival and parasite infection: the effect of *Wuchereria bancrofti* on its vector *Culex quinquefasciatus*. Parasitology. 2004, 129: 43-50. 10.1017/S0031182004005153.

Article
CAS
PubMed
Google Scholar

Snow LC, Bockarie MJ, Michael E: Transmission dynamics of lymphatic filariasis: vector-specific density dependence in the development of *Wuchereria bancrofti* infective larvae in mosquitoes. Med Vet Entomol. 2006, 20: 261-272. 10.1111/j.1365-2915.2006.00629.x.

Article
CAS
PubMed
Google Scholar

Stolk WA, Van Oortmarssen GJ, Subramanian S, Das PK, Borsboom GJ, Habbema JD, de Vlas SJ: Assessing density dependence in the transmission of lymphatic filariasis: uptake and development of *Wuchereria bancrofti* microfilariae in the vector mosquitoes. Med Vet Entomol. 2004, 18: 57-60. 10.1111/j.0269-283X.2004.0470.x.

Article
CAS
PubMed
Google Scholar