Dietz K: Density-dependence in parasite transmission dynamics. Parasitol Today. 1988, 4: 91-97. 10.1016/0169-4758(88)90034-8.
Article
CAS
PubMed
Google Scholar
Sinden RE, Dawes EJ, Alavi Y, Waldock J, Finney O, Mendoza J, Butcher GA, Andrews L, Hill AV, Gilbert SC, Basáñez MG: Progression of Plasmodium berghei through Anopheles stephensi is density-dependent. PLoS Pathog. 2007, 3: e195-10.1371/journal.ppat.0030195.
Article
PubMed Central
PubMed
Google Scholar
Harrington LC, Vermeylen F, Jones JJ, Kitthawee S, Sithiprasasna R, Edman JD, Scott TW: Age-dependent survival of the dengue vector Aedes aegypti (Diptera: Culicidae) demonstrated by simultaneous release-recapture of different age cohorts. J Med Entomol. 2008, 45: 307-313. 10.1603/0022-2585(2008)45[307:ASOTDV]2.0.CO;2.
Article
PubMed
Google Scholar
Styer LM, Carey JR, Wang JL, Scott TW: Mosquitoes do senesce: departure from the paradigm of constant mortality. Am J Trop Med Hyg. 2007, 76: 111-117.
PubMed Central
PubMed
Google Scholar
Anderson RA, Knols BG, Koella JC: Plasmodium falciparum sporozoites increase feeding-associated mortality of their mosquito hosts Anopheles gambiae s.l. Parasitology. 2000, 120: 329-333. 10.1017/S0031182099005570.
Article
PubMed
Google Scholar
Ferguson HM, Read AF: Why is the effect of malaria parasites on mosquito survival still unresolved?. Trends Parasitol. 2002, 18: 256-261. 10.1016/S1471-4922(02)02281-X.
Article
PubMed
Google Scholar
Dawes EJ, Churcher TS, Zhuang S, Sinden RE, Basáñez MG: Anopheles mortality is both age- and Plasmodium-density dependent: implications for malaria transmission. Malar J. 2009, 8: 228-10.1186/1475-2875-8-228.
Article
PubMed Central
PubMed
Google Scholar
Poudel SS, Newman RA, Vaughan JA: Rodent Plasmodium: population dynamics of early sporogony within Anopheles stephensi mosquitoes. J Parasitol. 2008, 94: 999-1008. 10.1645/GE-1407.1.
Article
PubMed
Google Scholar
Vaughan JA: Population dynamics of Plasmodium sporogony. Trends Parasitol. 2007, 23: 63-70. 10.1016/j.pt.2006.12.009.
Article
PubMed
Google Scholar
Barnes KI, White NJ: Population biology and antimalarial resistance: The transmission of antimalarial drug resistance in Plasmodium falciparum. Acta Trop. 2005, 94: 230-240.
Article
CAS
PubMed
Google Scholar
Drakeley CJ, Secka I, Correa S, Greenwood BM, Targett GA: Host haematological factors influencing the transmission of Plasmodium falciparum gametocytes to Anopheles gambiae s.s. mosquitoes. Trop Med Int Health. 1999, 4: 131-138. 10.1046/j.1365-3156.1999.00361.x.
Article
CAS
PubMed
Google Scholar
Paul RE, Bonnet S, Boudin C, Tchuinkam T, Robert V: Aggregation in malaria parasites places limits on mosquito infection rates. Infect Genet Evol. 2007, 7: 577-586. 10.1016/j.meegid.2007.04.004.
Article
CAS
PubMed
Google Scholar
Pichon G, Robert V, Tchuinkam T, Mulder B, Verhave JP: A quantitative analysis of the distribution of Plasmodium falciparum oocysts in Anopheles gambiae. Parasite. 1996, 3: 161-167.
Article
Google Scholar
Stepniewska K, Price RN, Sutherland CJ, Drakeley CJ, von Seidlein L, Nosten F, White NJ: Plasmodium falciparum gametocyte dynamics in areas of different malaria endemicity. Malar J. 2008, 7: 249-10.1186/1475-2875-7-249.
Article
PubMed Central
PubMed
Google Scholar
Kebaier C, Voza T, Vanderberg J: Kinetics of mosquito-injected Plasmodium sporozoites in mice: fewer sporozoites are injected into sporozoite-immunized mice. PLoS Pathog. 2009, 5: e1000399-10.1371/journal.ppat.1000399.
Article
PubMed Central
PubMed
Google Scholar
Medica DL, Sinnis P: Quantitative dynamics of Plasmodium yoelii sporozoite transmission by infected anopheline mosquitoes. Infect Immun. 2005, 73: 4363-4369. 10.1128/IAI.73.7.4363-4369.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Saul A: Mosquito stage, transmission blocking vaccines for malaria. Curr Opin Infect Dis. 2007, 20: 476-481. 10.1097/QCO.0b013e3282a95e12.
Article
PubMed
Google Scholar
Koella JC, Lorenz L, Bargielowski I: Microsporidians as evolution-proof agents of malaria control?. Adv Parasitol. 2009, 68: 315-327. full_text.
Article
PubMed
Google Scholar
Christophides GK: Transgenic mosquitoes and malaria transmission. Cell Microbiol. 2005, 7: 325-333. 10.1111/j.1462-5822.2005.00495.x.
Article
CAS
PubMed
Google Scholar
Carter R, Mendis KN, Miller LH, Molineaux L, Saul A: Malaria transmission-blocking vaccines--how can their development be supported?. Nat Med. 2000, 6: 241-244. 10.1038/73062.
Article
CAS
PubMed
Google Scholar
Beier JC, Onyango FK, Ramadhan M, Koros JK, Asiago CM, Wirtz RA, Koech DK, Roberts CR: Quantitation of malaria sporozoites in the salivary glands of wild Afrotropical Anopheles. Med Vet Entomol. 1991, 5: 63-70. 10.1111/j.1365-2915.1991.tb00522.x.
Article
CAS
PubMed
Google Scholar
Medley GF, Sinden RE, Fleck S, Billingsley PF, Tirawanchai N, Rodriguez MH: Heterogeneity in patterns of malarial oocyst infections in the mosquito vector. Parasitology. 1993, 106: 441-449. 10.1017/S0031182000076721.
Article
PubMed
Google Scholar
Vaughan JA, Noden BH, Beier JC: Sporogonic development of cultured Plasmodium falciparum in six species of laboratory-reared Anopheles mosquitoes. Am J Trop Med Hyg. 1994, 51: 233-243.
CAS
PubMed
Google Scholar
Churcher TS, Ferguson NM, Basáñez MG: Density dependence and overdispersion in the transmission of helminth parasites. Parasitology. 2005, 131: 121-132. 10.1017/S0031182005007341.
Article
CAS
PubMed
Google Scholar
Jahan N, Docherty PT, Billingsley PF, Hurd H: Blood digestion in the mosquito, Anopheles stephensi: the effects of Plasmodium yoelii nigeriensis on midgut enzyme activities. Parasitology. 1999, 119: 535-541. 10.1017/S0031182099005090.
Article
CAS
PubMed
Google Scholar
Beier JC: Malaria parasite development in mosquitoes. Annu Rev Entomol. 1998, 43: 519-543. 10.1146/annurev.ento.43.1.519.
Article
CAS
PubMed
Google Scholar
Hurd H, Hogg JC, Renshaw M: Interactions between bloodfeeding, fecundity and infection in mosquitos. Parasitology Today. 1995, 11: 411-416. 10.1016/0169-4758(95)80021-2.
Article
Google Scholar
Dimopoulos G, Christophides GK, Meister S, Schultz J, White KP, Barillas-Mury C, Kafatos FC: Genome expression analysis of Anopheles gambiae: responses to injury, bacterial challenge, and malaria infection. Proc Natl Acad Sci USA. 2002, 99: 8814-8819. 10.1073/pnas.092274999.
Article
PubMed Central
CAS
PubMed
Google Scholar
Burnham K, Anderson D: Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach. 2004, New York: Springer, 2
Chapter
Google Scholar
Saul A, Fay MP: Human immunity and the design of multi-component, single target vaccines. PLoS One. 2007, 2: e850-10.1371/journal.pone.0000850.
Article
PubMed Central
PubMed
Google Scholar
Saul A: Efficacy model for mosquito stage transmission blocking vaccines for malaria. Parasitology. 2008, 135: 1497-1506. 10.1017/S0031182008000280.
Article
CAS
PubMed
Google Scholar
Saul AJ, Graves PM, Kay BH: A cyclical feeding model for pathogen transmission and its application to determine vectorial capacity from vector infection-rates. J Appl Ecol. 1990, 27: 123-133. 10.2307/2403572.
Article
Google Scholar
Smith DL, McKenzie FE: Statics and dynamics of malaria infection in Anopheles mosquitoes. Malar J. 2004, 3: 13-10.1186/1475-2875-3-13.
Article
PubMed Central
PubMed
Google Scholar
Okell LC, Ghani AC, Lyons E, Drakeley CJ: Submicroscopic infection in Plasmodium falciparum-endemic populations: a systematic review and meta-analysis. J Infect Dis. 2009, 200: 1509-1517. 10.1086/644781.
Article
PubMed
Google Scholar
Schneider P, Bousema JT, Gouagna LC, Otieno S, van de Vegte-Bolmer M, Omar SA, Sauerwein RW: Submicroscopic Plasmodium falciparum gametocyte densities frequently result in mosquito infection. Am J Trop Med Hyg. 2007, 76: 470-474.
PubMed
Google Scholar
Rosenberg R, Koontz LC, Carter R: Infection of Aedes aegypti with zygotes of Plasmodium gallinaceum fertilized in vitro. J Parasitol. 1982, 68: 653-656. 10.2307/3280924.
Article
CAS
PubMed
Google Scholar
Drakeley CJ, Carneiro I, Reyburn H, Malima R, Lusingu JP, Cox J, Theander TG, Nkya WM, Lemnge MM, Riley EM: Altitude-dependent and -independent variations in Plasmodium falciparum prevalence in northeastern Tanzania. J Infect Dis. 2005, 191: 1589-1598. 10.1086/429669.
Article
PubMed
Google Scholar
Adjuik M, Babiker A, Garner P, Olliaro P, Taylor W, White N: Artesunate combinations for treatment of malaria: meta-analysis. Lancet. 2004, 363: 9-17. 10.1016/S0140-6736(03)15162-8.
Article
CAS
PubMed
Google Scholar
Draper CC: Observations on the infectiousness of gametocytes in hyperendemic malaria. Trans R Soc Trop Med Hyg. 1953, 47: 160-165. 10.1016/0035-9203(53)90072-8.
Article
CAS
PubMed
Google Scholar
Jeffery GM, Eyles DE: Infectivity to mosquitoes of Plasmodium falciparum as related to gametocyte density and duration of infection. Am J Trop Med Hyg. 1955, 4: 781-789.
CAS
PubMed
Google Scholar
Tchuinkam T, Mulder B, Dechering K, Stoffels H, Verhave JP, Cot M, Carnevale P, Meuwissen JH, Robert V: Experimental infections of Anopheles gambiae with Plasmodium falciparum of naturally infected gametocyte carriers in Cameroon: factors influencing the infectivity to mosquitoes. Trop Med Parasitol. 1993, 44: 271-276.
CAS
PubMed
Google Scholar
Naotunne TD, Rathnayake KD, Jayasinghe A, Carter R, Mendis KN: Plasmodium cynomolgi: serum-mediated blocking and enhancement of infectivity to mosquitoes during infections in the natural host, Macaca sinica. Exp Parasitol. 1990, 71: 305-313. 10.1016/0014-4894(90)90035-B.
Article
CAS
PubMed
Google Scholar
Peiris JS, Premawansa S, Ranawaka MB, Udagama PV, Munasinghe YD, Nanayakkara MV, Gamage CP, Carter R, David PH, Mendis KN: Monoclonal and polyclonal antibodies both block and enhance transmission of human Plasmodium vivax malaria. Am J Trop Med Hyg. 1988, 39: 26-32.
CAS
PubMed
Google Scholar
Tirawanchai N, Winger LA, Nicholas J, Sinden RE: Analysis of immunity induced by the affinity-purified 21-kilodalton zygote-ookinete surface antigen of Plasmodium berghei. Infect Immun. 1991, 59: 36-44.
PubMed Central
CAS
PubMed
Google Scholar
Chowdhury DR, Angov E, Kariuki T, Kumar N: A potent malaria transmission blocking vaccine based on codon harmonized full length Pfs48/45 expressed in Escherichia coli. PLoS One. 2009, 4: e6352-10.1371/journal.pone.0006352.
Article
PubMed Central
PubMed
Google Scholar
Miura K, Keister DB, Muratova OV, Sattabongkot J, Long CA, Saul A: Transmission-blocking activity induced by malaria vaccine candidates Pfs25/Pvs25 is a direct and predictable function of antibody titer. Malar J. 2007, 6: 107-10.1186/1475-2875-6-107.
Article
PubMed Central
PubMed
Google Scholar
Koella JC, Sorensen FL, Anderson RA: The malaria parasite, Plasmodium falciparum, increases the frequency of multiple feeding of its mosquito vector, Anopheles gambiae. Proc Biol Sci. 1998, 265: 763-768. 10.1098/rspb.1998.0358.
Article
PubMed Central
CAS
PubMed
Google Scholar
Anderson RA, Koella JC, Hurd H: The effect of Plasmodium yoelii nigeriensis infection on the feeding persistence of Anopheles stephensi Liston throughout the sporogonic cycle. Proc Biol Sci. 1999, 266: 1729-1733. 10.1098/rspb.1999.0839.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hogg JC, Hurd H: Malaria-induced reduction of fecundity during the first gonotrophic cycle of Anopheles stephensi mosquitoes. Med Vet Entomol. 1995, 9: 176-180. 10.1111/j.1365-2915.1995.tb00175.x.
Article
CAS
PubMed
Google Scholar
Mitri C, Thiery I, Bourgouin C, Paul RE: Density-dependent impact of the human malaria parasite Plasmodium falciparum gametocyte sex ratio on mosquito infection rates. Proc Biol Sci. 2009, 276: 3721-3726. 10.1098/rspb.2009.0962.
Article
PubMed Central
CAS
PubMed
Google Scholar
Basáñez MG, Remme JHF, Alley ES, Bain O, Shelley AJ, Medley GF, Anderson RM: Density-dependent processes in the transmission of human onchocerciasis: Relationship between the numbers of microfilariae ingested and successful larval development in the simuliid vector. Parasitology. 1995, 110: 409-427. 10.1017/S0031182000064751.
Article
PubMed
Google Scholar
Basáñez MG, Townson H, Williams JR, Frontado H, Villamizar NJ, Anderson RM: Density-dependent processes in the transmission of human onchocerciasis: Relationship between microfilarial intake and mortality of the simuliid vector. Parasitology. 1996, 113: 331-355. 10.1017/S003118200006649X.
Article
PubMed
Google Scholar
Krishnamoorthy K, Subramanian S, Van Oortmarssen GJ, Habbema JD, Das PK: Vector survival and parasite infection: the effect of Wuchereria bancrofti on its vector Culex quinquefasciatus. Parasitology. 2004, 129: 43-50. 10.1017/S0031182004005153.
Article
CAS
PubMed
Google Scholar
Snow LC, Bockarie MJ, Michael E: Transmission dynamics of lymphatic filariasis: vector-specific density dependence in the development of Wuchereria bancrofti infective larvae in mosquitoes. Med Vet Entomol. 2006, 20: 261-272. 10.1111/j.1365-2915.2006.00629.x.
Article
CAS
PubMed
Google Scholar
Stolk WA, Van Oortmarssen GJ, Subramanian S, Das PK, Borsboom GJ, Habbema JD, de Vlas SJ: Assessing density dependence in the transmission of lymphatic filariasis: uptake and development of Wuchereria bancrofti microfilariae in the vector mosquitoes. Med Vet Entomol. 2004, 18: 57-60. 10.1111/j.0269-283X.2004.0470.x.
Article
CAS
PubMed
Google Scholar