WHO (2004) Global strategic framework for integrated vector management. World Health Organization, pp 1–12. WHO/CDS/CPE/PVC/2004
WHO (2008) WHO position statement on integrated vector management. Wkly Epidemiol Rec 83:177
Google Scholar
Beier JC, Keating J, Githure JI, Macdonald MB, Impoinvil DE, Novak RJ (2008) Integrated vector management for malaria control. Malar J 7(Suppl 1):S4
Article
PubMed Central
PubMed
Google Scholar
World Health Organization (2004) Malaria vector control and personal protection. World Health Organization, Geneva Switzerland, p 936. WHO Technical Report Series 2004
WHO (2008) Global malaria control and elimination: report of a technical review. World Health Organization, Geneva
Google Scholar
Cohen JM, Smith DL, Cotter C, Ward A, Yamey G, Sabot O et al (2012) Malaria resurgence: a systematic review and assessment of its causes. Malar J 11:122
Article
PubMed Central
PubMed
Google Scholar
Russell TL, Beebe NW, Cooper RD, Lobo NF, Burkot TR (2013) Successful malaria elimination strategies require interventions that target changing vector behaviours. Malar J 12:56
Article
PubMed Central
PubMed
Google Scholar
Müller GC, Schlein Y (2006) Sugar questing mosquitoes in arid areas gather on scarce blossoms that can be used for control. Int J Parasitol 36:1077–1080
Article
PubMed
Google Scholar
Müller GC, Schlein Y (2008) Efficacy of toxic sugar baits against adult cistern dwelling Anopheles claviger. Trans R Soc Trop Med Hyg 102:480–484
Article
PubMed
Google Scholar
Schlein Y, Müller GC (2008) An approach to mosquito control: using the dominant attraction of flowering Tamarix jordanis trees against Culex pipiens. J Med Entomol 45:384–390
Article
PubMed
Google Scholar
Müller GC, Kravchenko VD, Schlein Y (2008) Decline of Anopheles sergenti and Aedes caspius populations following presentation of attractive, toxic (Spinosad), sugar bait stations in an oasis. J Am Mosq Control Assoc 12:147–149
Article
Google Scholar
Müller GC, Beier JC, Traore SF, Toure MB, Traore MM, Bah S et al (2010) Successful field trial of attractive toxic sugar bait (ATSB) plant spraying methods against malaria vectors in the Anopheles gambiae complex in Mali, West Africa. Malar J 9:210
Article
PubMed Central
PubMed
Google Scholar
Müller GC, Junnila A, Schlein Y (2010) Effective control of adult Culex pipiens by spraying an attractive toxic sugar bait solution in the vegetation near larval habitats. J Med Entomol 47:63–66
Article
PubMed
Google Scholar
Beier JC, Müller GC, Gu W, Arheart KL, Schlein Y (2012) Attractive toxic sugar bait (ATSB) methods decimate populations of Anopheles malaria vectors in arid environments regardless of the local availability of favoured sugar-source blossoms. Malar J 11:31
Article
PubMed Central
PubMed
Google Scholar
Gu W, Müller GC, Schlein Y, Novak RJ, Beier JC (2011) Natural plant sugar sources of Anopheles mosquitoes strongly impact malaria transmission potential. PLoS One 6:e15996
Article
CAS
PubMed Central
PubMed
Google Scholar
Qualls WA, Xue RD, Revay EE, Allan SA, Müller GC (2012) Implications for operational control of adult mosquito production in cistern and wells in St. Augustine, FL using attractive sugar baits. Acta Trop 124:156–161
Article
Google Scholar
Naranjo DP, Qualls WA, Alimi TO, Roque DD, Samson DM, Arheart KC et al (2013) Evaluation of boric acid sugar baits against Aedes albopictus (Diptera: Culicidae) in tropical environments. Parasitol Res 112:1583–1587
Article
PubMed
Google Scholar
Khallaayoune K, Qualls WA, Revay EE, Allan SA, Arheart KA, Kravchenko VD et al (2013) Attractive toxic sugar baits: control of mosquitoes with the low risk active ingredient dinotefuran and potential impacts on non-target organisms in Morocco. Environ Entomol 42:1040–1045
Article
PubMed Central
PubMed
Google Scholar
Revay EE, Müller GC, Qualls WA, Kline DL, Narnajo DP, Arheart KL et al (2014) Control of Aedes albopictus with attractive toxic sugar baits (ATSB) and potential impact on non-target organism in St. Augustine, Florida. Parasitol Res 113:73–79
Article
PubMed Central
PubMed
Google Scholar
Qualls WA, Müller GC, Revay EE, Allan SA, Arheart KL, Beier JC et al (2014) Evaluation of attractive toxic sugar baits (ATSB)—barrier control of vector and nuisance mosquitoes and its effect on non-target organisms in sub-tropical environments in Florida. Acta Trop 131:104–110
Article
PubMed Central
PubMed
Google Scholar
Fulcher A, Scott JM, Qualls WA, Müller GC, Xue RD (2014) Attractive toxic sugar baits mixed with pyriproxyfen sprayed on plants again adult and larval Aedes albopictus (Diptera: Culicidae). J Med Entomol 51:896–899
Article
CAS
PubMed
Google Scholar
Xue RD, Kline DL, Ali A, Barnard DR (2006) Application of boric acid baits to plant foliage for adult mosquito control. J Am Mosq Control Assoc 22:497–500
Article
CAS
PubMed
Google Scholar
Enayati A, Hemingway J (2010) Malaria management: past, present, and future. Ann Rev Entomol 55:569–591
Article
CAS
Google Scholar
Environmental Protection Agency (2014) Minimum risk pesticides. EPA.gov
Allan SA (2011) Laboratory evaluation of mosquito susceptibility to insecticides combined with sucrose. J Vector Ecol 36:59–67
Article
PubMed
Google Scholar
Sogoba N, Vounatsou P, Bagayoko MM, Doumbia S, Dolo G, Gosoniu L et al (2007) The spatial distribution of Anopheles gambiae sensu stricto and Anopheles arabiensis (Diptera: Culicidae) in Mali. Geospat Health 1:213–222
Article
CAS
PubMed
Google Scholar
Dicko A, Mantel C, Kouriba B, Sagara I, Thera MA, Doumbia S et al (2005) Season, fever prevalence and pyrogenic threshold for malaria disease definition in an endemic area of Mali. Trop Med Int Health 10:550–556
Article
PubMed
Google Scholar
Müller GC, Beier JC, Traore SF, Toure MB, Traore MM, Bah S et al (2010) Field experiments of Anopheles gambiae attraction to local fruits/seedpods and flowering plants in Mali to optimize strategies for malaria vector control in Africa using attractive toxic sugar bait methods. Malar J 9:262
Article
PubMed Central
PubMed
Google Scholar
Müller GC, Junnila A, Qualls WA, Revay EE, Kline DL, Allan S et al (2010) Control of Culex quinquefasciatus in a storm drain system in Florida using attractive toxic sugar baits. J Med Vet Entomol 24:346–351
Article
Google Scholar
WHO (1975) Manual on practical entomology in malaria: part II—methods and techniques. World Health Organization Offset Publications No. 13, Geneva
Scott JA, Brogdon WG, Collins FH (1993) Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg 49:520–529
CAS
PubMed
Google Scholar
Gillies MT, DeMeillon B (1968) The Anophelinae of Africa South of the Sahara (Ethiopian Zoogeographical Region). Publication of the South Africa Institute of Med. Res. 1968, No. 54. Hortors Printers Johannesburg, South Africa
Nunes RD, de Oliveira RL, Braz GR (2008) A novel method for measuring fructose ingestion by mosquitoes. J Vector Ecol 33:225
Article
PubMed
Google Scholar
Detinova TS (1962) Age grouping methods in Diptera of medical importance. World Health Organization Monograph Series 47, Geneva, Switzerland
Marshall JM, White MT, Chani AC, Schlein Y, Müller GC, Beier JC (2013) Quantifying the mosquito’s sweet tooth: modelling the effectiveness of attractive toxic sugar baits (ATSB) for malaria vector control. Malar J 12:291
Article
PubMed Central
PubMed
Google Scholar
Stewart ZP, Oxborough RM, Tungus PK, Kirby MJ, Rowland MW, Irish SR (2013) Indoor application of attractive toxic sugar bait (ATSB) in combination with mosquito nets for control of pyrethroid-resistant mosquitoes. PLoS One 8:e84168
Article
PubMed Central
PubMed
Google Scholar
Foster WA (1995) Mosquito sugar feeding and reproductive energetics. Annu Rev Entomol 40:443–474
Article
CAS
PubMed
Google Scholar
Vontas J, Moore S, Kleinschmidt I, Ranson H, Lindsay S, Lengeler C et al (2014) Framework for rapid assessment and adoption of new vector control tools. Trends Parasitol 30:191–204
Article
PubMed
Google Scholar