WHO. World Malaria Report 2015. Geneva: World Health Organization. http://www.who.int/malaria/publications/world-malaria-report-2015/report/en/. Accessed 18 July 2017.
Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:411–23.
Article
PubMed
PubMed Central
Google Scholar
Olotu A, Fegan G, Wambua J, Nyangweso G, Leach A, Lievens M, et al. Seven-year efficacy of RTS, S/AS01 malaria vaccine among young African children. N Engl J Med. 2016;374:2519–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79:629–61.
Article
CAS
PubMed
Google Scholar
Zhai X, Wang Q, Li M. Tu Youyou’s Nobel Prize and the academic evaluation system in China. Lancet. 2016;387:1722.
Article
PubMed
Google Scholar
Tagboto S, Townson S. Antiparasitic properties of medicinal plants and other naturally occurring products. Adv Parasitol. 2001;50:199–295.
Article
CAS
PubMed
Google Scholar
Schmidt TJ, Khalid SA, Romanha AJ, Alves TM, Biavatti MW, Brun R, et al. The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases—part I. Curr Med Chem. 2012;19:2128–75.
Article
CAS
PubMed
Google Scholar
Ginsburg H, Deharo E. A call for using natural compounds in the development of new antimalarial treatments—an introduction. Malar J. 2011;10:S1.
Article
PubMed
PubMed Central
Google Scholar
Isah MB, Ibrahim MA, Mohammed A, Aliyu AB, Masola B, Coetzer THT. A systematic review of pentacyclic triterpenes and their derivatives as chemotherapeutic agents against tropical parasitic diseases. Parasitology. 2016;143:1219–31.
Article
CAS
PubMed
Google Scholar
Bero J, Ganfon H, Jonville M-C, Frédérich M, Gbaguidi F, DeMol P, et al. In vitro antiplasmodial activity of plants used in Benin in traditional medicine to treat malaria. J Ethnopharmacol. 2009;122:439–44.
Article
PubMed
Google Scholar
Bero J, Hérent M-F, Schmeda-Hirschmann G, Frédérich M, Quetin-Leclercq J. In vivo antimalarial activity of Keetia leucantha twigs extracts and in vitro antiplasmodial effect of their constituents. J Ethnopharmacol. 2013;149:176–83.
Article
PubMed
Google Scholar
Cimanga RK, Tona GL, Mesia GK, Kambu OK, Bakana DP, Kalenda PDT, et al. Bioassay-guided isolation of antimalarial triterpenoid acids from the leaves of Morinda lucida. Pharm Biol. 2006;44:677–81.
Article
CAS
Google Scholar
Bero J, Beaufay C, Hannaert V, Hérent M-F, Michels PA, Quetin-Leclercq J. Antitrypanosomal compounds from the essential oil and extracts of Keetia leucantha leaves with inhibitor activity on Trypanosoma brucei glyceraldehyde-3-phosphate dehydrogenase. Phytomedicine. 2013;20:270–4.
Article
CAS
PubMed
Google Scholar
Ioset J-R, Brun R, Wenzler T, Kaiser M, Yardley V. Drug screening for kinetoplastids diseases, a training manual for screening in neglected diseases. Drugs for neglected diseases initiative and Pan-Asian Screening Network, Geneva, Switzerland; 2009.
Muganga R, Angenot L, Tits M, Frédérich M. In vitro and in vivo antiplasmodial activity of three Rwandan medicinal plants and identification of their active compounds. Planta Med. 2014;80:482–9.
Article
CAS
PubMed
Google Scholar
Fidock DA, Rosenthal PJ, Croft SL, Brun R, Nwaka S. Antimalarial drug discovery: efficacy models for compound screening. Nat Rev Drug Discov. 2004;3:509–20.
Article
CAS
PubMed
Google Scholar
Bero J, Hannaert V, Chataigné G, Hérent M-F, Quetin-Leclercq J. In vitro antitrypanosomal and antileishmanial activity of plants used in Benin in traditional medicine and bio-guided fractionation of the most active extract. J Ethnopharmacol. 2011;137:998–1002.
Article
PubMed
Google Scholar
Dzubak P, Hajduch M, Vydra D, Hustova A, Kvasnica M, Biedermann D, et al. Pharmacological activities of natural triterpenoids and their therapeutic implications. Nat Prod Rep. 2006;23:394–411.
Article
CAS
PubMed
Google Scholar
Ziegler HL, Franzyk H, Sairafianpour M, Tabatabai M, Tehrani MD, Bagherzadeh K, et al. Erythrocyte membrane modifying agents and the inhibition of Plasmodium falciparum growth: structure-activity relationships for betulinic acid analogues. Bioorg Med Chem. 2004;12:119–27.
Article
CAS
PubMed
Google Scholar
Sairafianpour M, Bahreininejad B, Witt M, Ziegler HL, Jaroszewski JW, Staerk D. Terpenoids of Salvia hydrangea: two new, rearranged 20-norabietanes and the effect of oleanolic acid on erythrocyte membranes. Planta Med. 2003;69:846–50.
Article
CAS
PubMed
Google Scholar
Vo NN, Fukushima EO, Muranaka T. Structure and hemolytic activity relationships of triterpenoid saponins and sapogenins. J Nat Med. 2017;71:50–8.
Article
CAS
PubMed
Google Scholar
Broniatowski M, Flasiński M, Wydro P. Investigation of the interactions of lupane type pentacyclic triterpenes with outer leaflet membrane phospholipids–Langmuir monolayer and synchrotron X-ray scattering study. J Colloid Interface Sci. 2012;381:116–24.
Article
CAS
PubMed
Google Scholar
Broniatowski M, Flasiński M, Zięba K, Miśkowiec P. Interactions of pentacyclic triterpene acids with cardiolipins and related phosphatidylglycerols in model systems. Biochim Biophys Acta. 2014;1838:2530–8.
Article
CAS
PubMed
Google Scholar
Fajardo-Sánchez E, Galiano V, Villalaín J. Location of the bioactive pentacyclic triterpene ursolic acid in the membrane. A molecular dynamics study. J Biomol Struct Dyn. 2016;35(12):2688–700.
Article
PubMed
Google Scholar
Nwaka S, Hudson A. Innovative lead discovery strategies for tropical diseases. Nat Rev Drug Discov. 2006;5:941–55.
Article
CAS
PubMed
Google Scholar
Pink R, Hudson A, Mouriès M-A, Bendig M. Opportunities and challenges in antiparasitic drug discovery. Nat Rev Drug Discov. 2005;4:727–40.
Article
CAS
PubMed
Google Scholar
Woźniak Ł, Skąpska S, Marszałek K. Ursolic acid—a pentacyclic triterpenoid with a wide spectrum of pharmacological activities. Molecules. 2015;20:20614–41.
Article
PubMed
Google Scholar
Sultana N, Saeed Saify Z. Naturally occurring and synthetic agents as potential anti-inflammatory and immunomodulants. Antiinflamm Antiallergy Agents Med Chem. 2012;11:3–19.
Article
CAS
PubMed
Google Scholar
Pollier J, Goossens A. Oleanolic acid. Phytochemistry. 2012;77:10–5.
Article
CAS
PubMed
Google Scholar
Rasoanaivo P, Wright CW, Willcox ML, Gilbert B. Whole plant extracts versus single compounds for the treatment of malaria: synergy and positive interactions. Malar J. 2011;10:S4.
Article
PubMed
PubMed Central
Google Scholar
Deharo E, Ginsburg H. Analysis of additivity and synergism in the anti-plasmodial effect of purified compounds from plant extracts. Malar J. 2011;10:S5.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Sá MS, Costa JFO, Krettli AU, Zalis MG, de Maia GLA, Sette IMF, et al. Antimalarial activity of betulinic acid and derivatives in vitro against Plasmodium falciparum and in vivo in P. berghei-infected mice. Parasitol Res. 2009;105:275.
Article
PubMed
Google Scholar
da Silva GNS, Maria NRG, Schuck DC, Cruz LN, de Moraes MS, Nakabashi M, et al. Two series of new semisynthetic triterpene derivatives: differences in anti-malarial activity, cytotoxicity and mechanism of action. Malar J. 2013;12:89.
Article
PubMed
PubMed Central
Google Scholar
Moneriz C, Marín-García P, Bautista JM, Diez A, Puyet A. Parasitostatic effect of maslinic acid. II. Survival increase and immune protection in lethal Plasmodium yoelii-infected mice. Malar J. 2011;10:103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mavondo GA, Mkhwananzi BN, Mabandla MV. Pre-infection administration of asiatic acid retards parasitaemia induction in Plasmodium berghei murine malaria infected Sprague-Dawley rats. Malar J. 2016;15:226.
Article
PubMed
PubMed Central
Google Scholar
Gnoatto SCB, Susplugas S, Vechia LD, Ferreira TB, Dassonville-Klimpt A, Zimmer KR, et al. Pharmacomodulation on the 3-acetylursolic acid skeleton: design, synthesis, and biological evaluation of novel N-{3-[4-(3-aminopropyl)piperazinyl]propyl}-3-O-acetylursolamide derivatives as antimalarial agents. Bioorg Med Chem. 2008;16:771–82.
Article
CAS
PubMed
Google Scholar
Innocente AM, Silva GNS, Cruz LN, Moraes MS, Nakabashi M, Sonnet P, et al. Synthesis and antiplasmodial activity of betulinic acid and ursolic acid analogues. Molecules. 2012;17:12003–14.
Article
CAS
PubMed
Google Scholar
Simelane M, Shonhai A, Shode F, Smith P, Singh M, Opoku A. Anti-plasmodial activity of some Zulu medicinal plants and of some triterpenes isolated from them. Molecules. 2013;18:12313–23.
Article
CAS
PubMed
Google Scholar
Steele JC, Warhurst DC, Kirby GC, Simmonds MS. In vitro and in vivo evaluation of betulinic acid as an antimalarial. Phytother Res PTR. 1999;13:115–9.
Article
CAS
PubMed
Google Scholar
Mutai C, Rukunga G, Vagias C, Roussis V. In vivo screening of antimalarial activity of Acacia mellifera (Benth) (Leguminosae) on Plasmodium berghei in mice. Afr J Tradit Complement Altern Med. 2007;5:46–50.
PubMed
PubMed Central
Google Scholar
Habila JD. Novel antimalarial agent (Cinnamic 3β-hydroxyolean-12-en-28-carboxylic anhydride): synthesis, characterization and in vivo studies. Afr J Pharm Pharmacol. 2011;5:2667–75.
Article
CAS
Google Scholar
Drag-Zalesinska M, Kulbacka J, Saczko J, Wysocka T, Zabel M, Surowiak P, et al. Esters of betulin and betulinic acid with amino acids have improved water solubility and are selectively cytotoxic toward cancer cells. Bioorg Med Chem Lett. 2009;19:4814–7.
Article
CAS
PubMed
Google Scholar
Suneela D, Dipmala P. Synthesis and pharmacokinetic profile of rhein-boswellic acid conjugate. Bioorg Med Chem Lett. 2012;22:7582–7.
Article
CAS
PubMed
Google Scholar
Yu Z, Sun W, Peng W, Yu R, Li G, Jiang T. Pharmacokinetics in vitro and in vivo of two novel prodrugs of oleanolic acid in rats and its hepatoprotective effects against liver injury induced by CCl4. Mol Pharm. 2016;13:1699–710.
Article
CAS
PubMed
Google Scholar
Sun W, Peng W, Li G, Jiang T. Design, synthesis, and sustained-release property of 1,3-cyclic propanyl phosphate ester of 18β-glycyrrhetinic acid. Chem Biol Drug Des. 2011;77:206–11.
Article
CAS
PubMed
Google Scholar
Zhang B, Zhu X-M, Hu J-N, Ye H, Luo T, Liu X-R, et al. Absorption mechanism of ginsenoside compound K and its butyl and octyl ester prodrugs in Caco-2 cells. J Agric Food Chem. 2012;60:10278–84.
Article
CAS
PubMed
Google Scholar
Koga K, Kawamura M, Iwase H, Yoshikawa N. Intestinal absorption and biliary elimination of glycyrrhizic acid diethyl ester in rats. Drug Des Devel Ther. 2013;7:1235–43.
Article
PubMed
PubMed Central
Google Scholar
Cao F, Jia J, Yin Z, Gao Y, Sha L, Lai Y, et al. Ethylene glycol-linked amino acid diester prodrugs of oleanolic acid for PepT1-mediated transport: synthesis, intestinal permeability and pharmacokinetics. Mol Pharm. 2012;9:2127–35.
CAS
PubMed
Google Scholar
Chinaeke EE, Chime SA, Onyishi VI, Attama AA, Okore VC. Formulation development and evaluation of the anti-malaria properties of sustained release artesunate-loaded solid lipid microparticles based on phytolipids. Drug Deliv. 2015;22:652–65.
Article
CAS
PubMed
Google Scholar
Thakkar M, Brijesh S. Combating malaria with nanotechnology-based targeted and combinatorial drug delivery strategies. Drug Deliv Transl Res. 2016;6:414–25.
CAS
PubMed
Google Scholar