WHO. Susceptibility of Plasmodium falciparum to antimalarial drugs. Report on global monitoring 1996–2004. Geneva, World Health Organization, 2005. http://www.who.int/malaria/publications/atoz/whohtmmal20051103/en/. Accessed 29 Mar 2017.
WHO. Global report on antimalarial efficacy and drug resistance: 2000–2010. Geneva, World Health Organization, 2010. http://www.who.int/malaria/publications/atoz/9789241500470/en/. Accessed 29 Mar 2017.
Tjitra E, Anstey NM, Sugiarto P, Warikar N, Kenangalem E, Karyana M, et al. Multidrug-resistant Plasmodium vivax associated with severe and fatal malaria: a prospective study in Papua, Indonesia. PLoS Med. 2008;5:e128.
Article
PubMed
PubMed Central
Google Scholar
Price RN, von Seidlein L, Valecha N, Nosten F, Baird JK, White NJ. Global extent of chloroquine-resistant Plasmodium vivax: a systematic review and meta-analysis. Lancet Infect Dis. 2014;14:982–91.
Article
PubMed
PubMed Central
Google Scholar
Commons RJ, Thriemer K, Humphreys G, Suay I, Sibley CH, Guerin PJ, et al. The Vivax Surveyor: online mapping database for Plasmodium vivax clinical trials. Int J Parasitol. 2017;7:181–90.
CAS
Google Scholar
Young MD, Moore DV. Chloroquine resistance in Plasmodium falciparum. Am J Trop Med Hyg. 1961;10:317–20.
Article
CAS
PubMed
Google Scholar
Eyles DE, Hoo CC, Warren M, Sandosham AA. Plasmodium falciparum resistant to chloroquine in Cambodia. Am J Trop Med Hyg. 1963;12:840–3.
Article
CAS
PubMed
Google Scholar
Wernsdorfer WH. Epidemiology of drug resistance in malaria. Acta Trop. 1994;56:143–56.
Article
CAS
PubMed
Google Scholar
Mita T, Tanabe K, Kita K. Spread and evolution of Plasmodium falciparum drug resistance. Parasitol Int. 2009;58:201–9.
Article
CAS
PubMed
Google Scholar
WWARN. WWARN vivax surveyor. 2017. http://www.wwarn.org/tracking-resistance/vivax-surveyor. Accessed 8 Aug 2017.
Höfler W. Sulfadoxine-pyrimethamine resistant falciparum malaria from Cambodia. Dtsch Med Wochenschr. 1980;105:350–1 (in German).
PubMed
Google Scholar
Hurwitz ES, Johnson D, Campbell CC. Resistance of Plasmodium falciparum malaria to sulfadoxine-pyrimethamine (’Fansidar’) in a refugee camp in Thailand. Lancet. 1981;1:1068–70.
Article
CAS
PubMed
Google Scholar
McCollum AM, Poe AC, Hamel M, Huber C, Zhou Z, Shi YP, et al. Antifolate resistance in Plasmodium falciparum: multiple origins and identification of novel dhfr alleles. J Infect Dis. 2006;194:189–97.
Article
CAS
PubMed
Google Scholar
Pearce RJ, Pota H, Evehe M-SB, Bâ E-H, Mombo-Ngoma G, Malisa AL, et al. Multiple origins and regional dispersal of resistant dhps in African Plasmodium falciparum malaria. PLoS Med. 2009;6:e1000055.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lumb V, Das MK, Singh N, Dev V, Khan W, Sharma YD. Multiple origins of Plasmodium falciparum dihydropteroate synthetase mutant alleles associated with sulfadoxine resistance in India. Antimicrob Agents Chemother. 2011;55:2813–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alam MT, Vinayak S, Congpuong K, Wongsrichanalai C, Satimai W, Slutsker L, et al. Tracking origins and spread of sulfadoxine-resistant Plasmodium falciparum dhps alleles in Thailand. Antimicrob Agents Chemother. 2011;55:155–64.
Article
CAS
PubMed
Google Scholar
Roper C, Pearce R, Nair S, Sharp B, Nosten F, Anderson T. Intercontinental spread of pyrimethamine-resistant malaria. Science. 2004;305:1124.
Article
CAS
PubMed
Google Scholar
Boudreau EF, Webster HK, Pavanand K, Thosingha L. Type II mefloquine resistance in Thailand. Lancet. 1982;2:1335.
Article
CAS
PubMed
Google Scholar
Smithuis FM, van Woensel JB, Nordlander E, Vantha WS, ter Kuile FO. Comparison of two mefloquine regimens for treatment of Plasmodium falciparum malaria on the northeastern Thai-Cambodian border. Antimicrob Agents Chemother. 1993;37:1977–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
White NJ. Qinghaosu in combinations. Med Trop. 1998;58:85–8.
CAS
Google Scholar
White NJ. Preventing antimalarial drug resistance through combinations. Drug Resist Updates. 1998;1:3–9.
Article
CAS
Google Scholar
Ashley EA, White NJ. Artemisinin-based combinations. Curr Opin Infect Dis. 2005;18:531–6.
Article
CAS
PubMed
Google Scholar
WHO. Guidelines for the treatment of malaria. Geneva, World Health Organization, 2010. http://apps.who.int/medicinedocs/documents/s19105en/s19105en.pdf. Accessed 7 Apr 2017.
WorldWide Antimalarial Resistance Network (WWARN) DP Study Group. The effect of dosing regimens on the antimalarial efficacy of dihydroartemisinin-piperaquine: a pooled analysis of individual patient data. PLoS Med. 2013;10:e1001564.
Article
Google Scholar
Worldwide Antimalarial Resistance Network (WWARN) AL Dose Impact Study Group. The effect of dose on the antimalarial efficacy of artemether–lumefantrine: a systematic review and pooled analysis of individual patient data. Lancet Infect Dis. 2015;15:692–702.
Article
CAS
Google Scholar
WorldWide Antimalarial Resistance Network (WWARN) AS-AQ Study Group, Adjuik MA, Allan R, Anvikar AR, Ashley EA, Ba MS, et al. The effect of dosing strategies on the therapeutic efficacy of artesunate-amodiaquine for uncomplicated malaria: a meta-analysis of individual patient data. BMC Med. 2015;13:66.
Article
CAS
Google Scholar
Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009;361:455–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Noedl H, Se Y, Sriwichai S, Schaecher K, Teja-Isavadharm P, Smith B, et al. Artemisinin resistance in Cambodia: a clinical trial designed to address an emerging problem in Southeast Asia. Clin Infect Dis. 2010;51:e82–9.
Article
PubMed
Google Scholar
Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:411–23.
Article
PubMed
PubMed Central
CAS
Google Scholar
Saunders DL, Vanachayangkul P, Lon C. Dihydroartemisinin-piperaquine failure in Cambodia. N Engl J Med. 2014;371:484–5.
Article
CAS
PubMed
Google Scholar
Duru V, Witkowski B, Menard D. Plasmodium falciparum resistance to artemisinin derivatives and piperaquine: a major challenge for malaria elimination in Cambodia. Am J Trop Med Hyg. 2016;95:1228–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Menard D, Dondorp A. Antimalarial drug resistance: a threat to malaria elimination. Cold Spring Harb Perspect Med. 2017;7(7):a025619.
Article
PubMed
Google Scholar
Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois A-C, Khim N, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505:50–5.
Article
PubMed
CAS
Google Scholar
Straimer J, Gnadig NF, Witkowski B, Amaratunga C, Duru V, Ramadani AP, et al. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science. 2015;347:428–31.
Article
CAS
PubMed
Google Scholar
Ménard D, Khim N, Beghain J, Adegnika AA, Shafiul-Alam M, Amodu O, et al. A worldwide map of Plasmodium falciparum K13-propeller polymorphisms. N Engl J Med. 2016;374:2453–64.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chenet SM, Akinyi Okoth S, Huber CS, Chandrabose J, Lucchi NW, Talundzic E, et al. Independent Emergence of the Plasmodium falciparum Kelch Propeller Domain Mutant Allele C580Y in Guyana. J. Infect. Dis. 2016;213:1472–5.
Article
PubMed
Google Scholar
Takala-Harrison S, Jacob CG, Arze C, Cummings MP, Silva JC, Dondorp AM, et al. Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. J Infect Dis. 2015;211:670–9.
Article
CAS
PubMed
Google Scholar
Woodrow CJ, White NJ. The clinical impact of artemisinin resistance in Southeast Asia and the potential for future spread. FEMS Microbiol Rev. 2017;41:34–48.
Article
PubMed
Google Scholar
Wells TNC, Hooft van Huijsduijnen R, Van Voorhis WC. Malaria medicines: a glass half full? Nat Rev Drug Discov. 2015;14:424–42.
Article
CAS
PubMed
Google Scholar
Bhagavathula AS, Elnour AA, Shehab A. Alternatives to currently used antimalarial drugs: in search of a magic bullet. Infect Dis Poverty. 2016;5:103.
Article
PubMed
PubMed Central
Google Scholar
Price RN, Dorsey G, Ashley EA, Barnes KI, Baird JK, d’Alessandro U, et al. World Antimalarial Resistance Network I: clinical efficacy of antimalarial drugs. Malar J. 2007;6:119.
Article
PubMed
PubMed Central
Google Scholar
Tinto H, Valea I, Ouédraogo J-B, Guiguemdé TR. Lessons learnt from 20 years surveillance of malaria drug resistance prior to the policy change in Burkina Faso. Ann Parasitol. 2016;62:17–24.
PubMed
Google Scholar
WHO. Minutes of the Evidence Review Group meeting on the emergence and spread of multidrug‐resistant Plasmodium falciparum lineages in the Greater Mekong subregion. Geneva, World Health Organization, 2016. http://www.who.int/malaria/mpac/mpac-mar2017-erg-multidrug-resistance-session6.pdf. Accessed 8 Aug 2017.
WHO. Methods for surveillance of antimalarial drug efficacy. Geneva, World Health Organization, 2009. http://apps.who.int/iris/bitstream/10665/44048/1/9789241597531_eng.pdf. Accessed 8 Aug 2017.
WHO. Resistance of malaria parasites to drugs. Report of a WHO scientific group. Geneva, World Health Organization, 1965. http://apps.who.int/iris/bitstream/10665/40615/1/WHO_TRS_296.pdf. Accessed 8 Aug 2017.
WHO. Assessment of therapeutic efficacy of antimalarial drugs. for uncomplicated falciparum malaria in areas with intense transmission. Geneva, World Health Organization, 1996. http://apps.who.int/iris/bitstream/10665/63295/1/WHO_MAL_96.1077.pdf. Accessed 8 Aug 2017.
WHO. Assessment and monitoring of antimalarial drug efficacy for the treatment of uncomplicated falciparum malaria. Geneva, World Health Organization, 2003. http://www.who.int/malaria/publications/atoz/whohtmrbm200350/en/. Accessed 8 Aug 2017.
WHO/MMV. Methods and techniques for clinical trials on antimalarial drug efficacy: Genotyping to identify parasite populations. Geneva, World Health Organization, 2008. http://www.who.int/malaria/publications/atoz/9789241596305/en/. Accessed 8 Aug 2017.
White NJ, Stepniewska K, Barnes K, Price RN, Simpson J. Simplified antimalarial therapeutic monitoring: using the day-7 drug level? Trends Parasitol. 2008;24:159–63.
Article
CAS
PubMed
Google Scholar
WHO. Methods and techniques for assessing exposure to antimalarial drugs in clinical field studies. Geneva, World Health Organization, 2011. http://www.who.int/malaria/publications/atoz/9789241502061/en/. Accessed 8 Aug 2017.
Konaté L, Zwetyenga J, Rogier C, Bischoff E, Fontenille D, Tall A, et al. Variation of Plasmodium falciparum msp1 block 2 and msp2 allele prevalence and of infection complexity in two neighbouring Senegalese villages with different transmission conditions. Trans R Soc Trop Med Hyg. 1999;93(Suppl 1):21–8.
Article
PubMed
Google Scholar
Greenhouse B, Dokomajilar C, Hubbard A, Rosenthal PJ, Dorsey G. Impact of transmission intensity on the accuracy of genotyping to distinguish recrudescence from new infection in antimalarial clinical trials. Antimicrob Agents Chemother. 2007;51:3096–103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mugittu K, Adjuik M, Snounou G, Ntoumi F, Taylor W, Mshinda H, et al. Molecular genotyping to distinguish between recrudescents and new infections in treatment trials of Plasmodium falciparum malaria conducted in sub-Saharan Africa: adjustment of parasitological outcomes and assessment of genotyping effectiveness. Trop Med Int Health. 2006;11:1350–9.
Article
CAS
PubMed
Google Scholar
Messerli C, Hofmann NE, Beck H-P, Felger I. Critical evaluation of molecular monitoring in malaria drug efficacy trials and pitfalls of length-polymorphic markers. Antimicrob Agents Chemother. 2017;61:e01500–16.
Article
CAS
PubMed
Google Scholar
Greenhouse B, Myrick A, Dokomajilar C, Woo JM, Carlson EJ, Rosenthal PJ, et al. Validation of microsatellite markers for use in genotyping polyclonal Plasmodium falciparum infections. Am J Trop Med Hyg. 2006;75:836–42.
CAS
PubMed
PubMed Central
Google Scholar
Falk N, Maire N, Sama W, Owusu-Agyei S, Smith T, Beck H-P, et al. Comparison of PCR-RFLP and Genescan-based genotyping for analyzing infection dynamics of Plasmodium falciparum. Am J Trop Med Hyg. 2006;74:944–50.
CAS
PubMed
Google Scholar
Liljander A, Wiklund L, Falk N, Kweku M, Mårtensson A, Felger I, et al. Optimization and validation of multi-coloured capillary electrophoresis for genotyping of Plasmodium falciparum merozoite surface proteins (msp1 and 2). Malar J. 2009;8:78.
Article
PubMed
PubMed Central
CAS
Google Scholar
Orjuela-Sánchez P, Brandi MC, Ferreira MU. Microsatellite analysis of malaria parasites. Methods Mol Biol. 2013;1006:247–58.
Article
PubMed
CAS
Google Scholar
Anderson TJ, Haubold B, Williams JT, Estrada-Franco JG, Richardson L, Mollinedo R, et al. Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Mol Biol Evol. 2000;17:1467–82.
Article
CAS
PubMed
Google Scholar
Abdul-Ghani R, Al-Maktari MT, Al-Shibani LA, Allam AF. A better resolution for integrating methods for monitoring Plasmodium falciparum resistance to antimalarial drugs. Acta Trop. 2014;137:44–57.
Article
CAS
PubMed
Google Scholar
Nyachieo A, Van Overmeir C, Laurent T, Dujardin J-C, D’Alessandro U. Plasmodium falciparum genotyping by microsatellites as a method to distinguish between recrudescent and new infections. Am J Trop Med Hyg. 2005;73:210–3.
CAS
PubMed
Google Scholar
Daniels R, Volkman SK, Milner DA, Mahesh N, Neafsey DE, Park DJ, et al. A general SNP-based molecular barcode for Plasmodium falciparum identification and tracking. Malar J. 2008;7:223.
Article
PubMed
PubMed Central
CAS
Google Scholar
Laufer MK, Djimdé AA, Plowe CV. Monitoring and deterring drug-resistant malaria in the era of combination therapy. Am J Trop Med Hyg. 2007;77:160–9.
PubMed
Google Scholar
Laufer MK. Monitoring antimalarial drug efficacy: current challenges. Curr Infect Dis Rep. 2009;11:59–65.
Article
PubMed
PubMed Central
Google Scholar
White NJ. Assessment of the pharmacodynamic properties of antimalarial drugs in vivo. Antimicrob Agents Chemother. 1997;41:1413–22.
CAS
PubMed
PubMed Central
Google Scholar
White NJ. Pharmacokinetic and pharmacodynamic considerations in antimalarial dose optimization. Antimicrob Agents Chemother. 2013;57:5792–807.
Article
CAS
PubMed
PubMed Central
Google Scholar
White NJ. Antimalarial pharmacokinetics and treatment regimens. Br J Clin Pharmacol. 1992;34:1–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
WorldWide Antimalarial Resistance Network, (WWARN) Lumefantrine PK/PD Study Group. Artemether-lumefantrine treatment of uncomplicated Plasmodium falciparum malaria: a systematic review and meta-analysis of day 7 lumefantrine concentrations and therapeutic response using individual patient data. BMC Med. 2015;13:227.
Article
CAS
Google Scholar
Hoglund RM, Workman L, Edstein MD, Thanh NX, Quang NN, Zongo I, et al. Population pharmacokinetic properties of piperaquine in falciparum malaria: an individual participant data meta-analysis. PLoS Med. 2017;14:e1002212.
Article
PubMed
PubMed Central
Google Scholar
Trager W, Jensen JB. Human malaria parasites in continuous culture. Science. 1976;193:673–5.
Article
CAS
PubMed
Google Scholar
Witkowski B, Amaratunga C, Khim N, Sreng S, Chim P, Kim S, et al. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in vitro and ex vivo drug-response studies. Lancet Infect Dis. 2013;13:1043–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar R, Musiyenko A, Barik S. Malar J. 2003;2:30.
Article
PubMed
PubMed Central
Google Scholar
Woodrow CJ, Dahlström S, Cooksey R, Flegg JA, Le Nagard H, Mentré F, et al. High-throughput analysis of antimalarial susceptibility data by the WorldWide Antimalarial Resistance Network (WWARN) in vitro analysis and reporting tool. Antimicrob Agents Chemother. 2013;57:3121–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Basco LK, Heseltine E, World Health Organization. Field application of in vitro assays sensitivity of human malaria parasites antimalarial drugs. Geneva: World Health Organization; 2007.
Google Scholar
Rieckmann KH, Campbell GH, Sax LJ, Mrema JE. Drug sensitivity of Plasmodium falciparum. An in vitro microtechnique. Lancet. 1978;1:22–3.
Article
CAS
PubMed
Google Scholar
WHO. In vitro micro-test (mark III) for the assessment of the response of Plasmodium falciparum to chloroquine, mefloquine, quinine, amodiaquine, sulfadoxine/pyrimethamine and artemisinin. Geneva, World Health Organization, 2001. http://www.who.int/malaria/publications/atoz/ctd_mal_97_20_Rev_2_2001/en/. Accessed 4 Apr 2017.
Desjardins RE, Canfield CJ, Haynes JD, Chulay JD. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother. 1979;16:710–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chulay JD, Haynes JD, Diggs CL. Plasmodium falciparum: assessment of in vitro growth by [3H] hypoxanthine incorporation. Exp Parasitol. 1983;55:138–46.
Article
CAS
PubMed
Google Scholar
Makler MT, Hinrichs DJ. Measurement of the lactate dehydrogenase activity of Plasmodium falciparum as an assessment of parasitemia. Am J Trop Med Hyg. 1993;48:205–10.
Article
CAS
PubMed
Google Scholar
Makler MT, Ries JM, Williams JA, Bancroft JE, Piper RC, Gibbins BL, et al. Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity. Am J Trop Med Hyg. 1993;48:739–41.
Article
CAS
PubMed
Google Scholar
Noedl H, Wernsdorfer WH, Miller RS, Wongsrichanalai C. Histidine-rich protein II: a novel approach to malaria drug sensitivity testing. Antimicrob Agents Chemother. 2002;46:1658–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brasseur P, Agnamey P, Moreno A, Druilhe P. Evaluation of in vitro drug sensitivity of antimalarials for Plasmodium falciparum using a colorimetric assay (DELI-microtest). Med Trop. 2001;61:545–7.
CAS
Google Scholar
Noedl H, Wernsdorfer WH, Kollaritsch H, Looareesuwan S, Miller RS, Wongsrichanalai C. Malaria drug-susceptibility testing. HRP2-based assays: current data, future perspectives. Wien Klin Wochenschr. 2003;115:23–7.
Article
CAS
PubMed
Google Scholar
Johnson JD, Dennull RA, Gerena L, Lopez-Sanchez M, Roncal NE, Waters NC. Assessment and continued validation of the malaria SYBR green I-based fluorescence assay for use in malaria drug screening. Antimicrob Agents Chemother. 2007;51:1926–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pattanapanyasat K, Thaithong S, Kyle DE, Udomsangpetch R, Yongvanitchit K, Hider RC, et al. Flow cytometric assessment of hydroxypyridinone iron chelators on in vitro growth of drug-resistant malaria. Cytometry. 1997;27:84–91.
Article
CAS
PubMed
Google Scholar
Wirjanata G, Handayuni I, Prayoga P, Apriyanti D, Chalfein F, Sebayang BF, et al. Quantification of Plasmodium ex vivo drug susceptibility by flow cytometry. Malar J. 2015;14:417.
Article
PubMed
PubMed Central
CAS
Google Scholar
Woodrow CJ, Wangsing C, Sriprawat K, Christensen PR, Nosten F, Rénia L, et al. Comparison between flow cytometry, microscopy, and lactate dehydrogenase-based enzyme-linked immunosorbent assay for Plasmodium falciparum drug susceptibility testing under field conditions. J Clin Microbiol. 2015;53:3296–303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Witkowski B, Khim N, Chim P, Kim S, Ke S, Kloeung N, et al. Reduced artemisinin susceptibility of Plasmodium falciparum ring stages in Western Cambodia. Antimicrob Agents Chemother. 2013;57:914–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Witkowski B, Lelievre J, Lopez Barragan MJ, Laurent V, Su XZ, Berry A, et al. Increased tolerance to artemisinin in Plasmodium falciparum is mediated by a quiescence mechanism. Antimicrob Agents Chemother. 2010;54:1872–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amaratunga C, Neal AT, Fairhurst RM. Flow cytometry-based analysis of artemisinin-resistant Plasmodium falciparum in the ring-stage survival assay. Antimicrob Agents Chemother. 2014;58:4938–40.
Article
PubMed
PubMed Central
CAS
Google Scholar
Picot S, Olliaro P, de Monbrison F, Bienvenu A-L, Price RN, Ringwald P. A systematic review and meta-analysis of evidence for correlation between molecular markers of parasite resistance and treatment outcome in falciparum malaria. Malar J. 2009;8:89.
Article
PubMed
PubMed Central
CAS
Google Scholar
Foote SJ, Kyle DE, Martin RK, Oduola AMJ, Forsyth K, Kemp DJ, et al. Several alleles of the multidrug-resistance gene are closely linked to chloroquine resistance in Plasmodium falciparum. Nature. 1990;345:255–8.
Article
CAS
PubMed
Google Scholar
Fidock DA, Nomura T, Talley AK, Cooper RA, Dzekunov SM, Ferdig MT, et al. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol Cell. 2000;6:861–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Djimdé A, Doumbo OK, Cortese JF, Kayentao K, Doumbo S, Diourté Y, et al. A molecular marker for chloroquine-resistant falciparum malaria. N Engl J Med. 2001;344:257–63.
Article
PubMed
Google Scholar
Peterson DS, Milhous WK, Wellems TE. Molecular basis of differential resistance to cycloguanil and pyrimethamine in Plasmodium falciparum malaria. Proc Natl Acad Sci USA. 1990;87:3018–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reeder JC, Rieckmann KH, Genton B, Lorry K, Wines B, Cowman AF. Point mutations in the dihydrofolate reductase and dihydropteroate synthetase genes and in vitro susceptibility to pyrimethamine and cycloguanil of Plasmodium falciparum isolates from Papua New Guinea. Am J Trop Med Hyg. 1996;55:209–13.
Article
CAS
PubMed
Google Scholar
Wang P, Read M, Sims PF, Hyde JE. Sulfadoxine resistance in the human malaria parasite Plasmodium falciparum is determined by mutations in dihydropteroate synthetase and an additional factor associated with folate utilization. Mol Microbiol. 1997;23:979–86.
Article
CAS
PubMed
Google Scholar
Cowman AF, Galatis D, Thompson JK. Selection for mefloquine resistance in Plasmodium falciparum is linked to amplification of the pfmdr1 gene and cross-resistance to halofantrine and quinine. Proc Natl Acad Sci USA. 1994;91:1143–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Price RN, Uhlemann A-C, Brockman A, McGready R, Ashley E, Phaipun L, et al. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet. 2004;364:438–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Korsinczky M, Chen N, Kotecka B, Saul A, Rieckmann K, Cheng Q. Mutations in Plasmodium falciparum cytochrome b that are associated with atovaquone resistance are located at a putative drug-binding site. Antimicrob Agents Chemother. 2000;44:2100–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Witkowski B, Duru V, Khim N, Ross LS, Saintpierre B, Beghain J, et al. A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype–genotype association study. Lancet Infect Dis. 2017;17:174–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amato R, Lim P, Miotto O, Amaratunga C, Dek D, Pearson RD, et al. Genetic markers associated with dihydroartemisinin–piperaquine failure in Plasmodium falciparum malaria in Cambodia: a genotype–phenotype association study. Lancet Infect Dis. 2017;17:164–73.
Article
CAS
PubMed
Google Scholar
Mann R, Sharma S, Mishra N, Valecha N, Anvikar AR. Comparative assessment of genomic DNA extraction processes for Plasmodium: identifying the appropriate method. J Vector Borne Dis. 2015;52:273–80.
PubMed
Google Scholar
Duraisingh MT, Curtis J, Warhurst DC. Plasmodium falciparum: detection of polymorphisms in the dihydrofolate reductase and dihydropteroate synthetase genes by PCR and restriction digestion. Exp Parasitol. 1998;89:1–8.
Article
CAS
PubMed
Google Scholar
de Eldin Pécoulas P, Basco LK, Abdallah B, Djé MK, Le Bras J, Mazabraud A. Plasmodium falciparum: detection of antifolate resistance by mutation-specific restriction enzyme digestion. Exp Parasitol. 1995;80:483–7.
Article
Google Scholar
Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA. 1977;74:5463–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miotto O, Amato R, Ashley EA, MacInnis B, Almagro-Garcia J, Amaratunga C, et al. Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nat Genet. 2015;47:226–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taylor SM, Parobek CM, Aragam N, Ngasala BE, Mårtensson A, Meshnick SR, et al. Pooled deep sequencing of Plasmodium falciparum isolates: an efficient and scalable tool to quantify prevailing malaria drug-resistance genotypes. J Infect Dis. 2013;208:1998–2006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Henden L, Lee S, Mueller I, Barry A, Bahlo M. Detecting selection signals in Plasmodium falciparum using identity-by-descent analysis. BioRxiv. 2016. https://doi.org/10.1101/088039.
Google Scholar
Chavchich M, Gerena L, Peters J, Chen N, Cheng Q, Kyle DE. Role of pfmdr1 amplification and expression in induction of resistance to artemisinin derivatives in Plasmodium falciparum. Antimicrob Agents Chemother. 2010;54:2455–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Purfield A, Nelson A, Laoboonchai A, Congpuong K, McDaniel P, Miller RS, et al. A new method for detection of pfmdr1 mutations in Plasmodium falciparum DNA using real-time PCR. Malar J. 2004;3:9.
Article
PubMed
PubMed Central
Google Scholar
LeClair NP, Conrad MD, Baliraine FN, Nsanzabana C, Nsobya SL, Rosenthal PJ. Optimization of a ligase detection reaction-fluorescent microsphere assay for characterization of resistance-mediating polymorphisms in African samples of Plasmodium falciparum. J Clin Microbiol. 2013;51:2564–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moers APHA, Hallett RL, Burrow R, Schallig HDFH, Sutherland CJ, van Amerongen A. Detection of single-nucleotide polymorphisms in Plasmodium falciparum by PCR primer extension and lateral flow immunoassay. Antimicrob Agents Chemother. 2015;59:365–71.
Article
CAS
PubMed
Google Scholar
QuantumDX. Malaria assay. 2017. http://www.nanomal.org/. Accessed 6 Apr 2017.
Hunja CW, Unger H, Ferreira PE, Lumsden R, Morris S, Aman R, et al. Travellers as sentinels: assaying the worldwide distribution of polymorphisms associated with artemisinin combination therapy resistance in Plasmodium falciparum using malaria cases imported into Scotland. Int J Parasitol. 2013;43:885–9.
Article
CAS
PubMed
Google Scholar
Gharbi M, Flegg JA, Hubert V, Kendjo E, Metcalf JE, Bertaux L, et al. Longitudinal study assessing the return of chloroquine susceptibility of Plasmodium falciparum in isolates from travellers returning from West and Central Africa, 2000–2011. Malar J. 2013;12:35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sibley C, Barnes KI, Plowe CV. The rationale and plan for creating a World Antimalarial Resistance Network (WARN). Malar J. 2007;6:118.
Article
PubMed
PubMed Central
Google Scholar
Sibley CH, Guerin PJ, Ringwald P. Monitoring antimalarial resistance: launching a cooperative effort. Trends Parasitol. 2010;26:221–4.
Article
PubMed
Google Scholar
WHO/TDR. Microscopy for the detection, identification and quantification of malaria parasites on stained thick and thin blood films in research settings. Geneva, World Health Organization. 2015. http://www.who.int/tdr/publications/microscopy_detec_ident_quantif/en/. Accessed 3 Apr 2017.
Das DK, Mukherjee R, Chakraborty C. Computational microscopic imaging for malaria parasite detection: a systematic review. J Microsc. 2015;260:1–19.
Article
CAS
PubMed
Google Scholar
Srivastava B, Anvikar AR, Ghosh SK, Mishra N, Kumar N, Houri-Yafin A, et al. Computer-vision-based technology for fast, accurate and cost effective diagnosis of malaria. Malar J. 2015;14:526.
Article
PubMed
PubMed Central
CAS
Google Scholar
Eshel Y, Houri-Yafin A, Benkuzari H, Lezmy N, Soni M, Charles M, et al. Evaluation of the Parasight Platform for Malaria Diagnosis. J. Clin. Microbiol. 2017;55:768–75
Article
PubMed
PubMed Central
Google Scholar
Collins WJ, Greenhouse B, Rosenthal PJ, Dorsey G. The use of genotyping in antimalarial clinical trials: a systematic review of published studies from 1995–2005. Malar J. 2006;5:122.
Article
PubMed
PubMed Central
CAS
Google Scholar
Plucinski MM, Morton L, Bushman M, Dimbu PR, Udhayakumar V. Robust algorithm for systematic classification of malaria late treatment failures as recrudescence or reinfection using microsatellite genotyping. Antimicrob Agents Chemother. 2015;59:6096–100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Noedl H, Wongsrichanalai C, Wernsdorfer WH. Malaria drug-sensitivity testing: new assays, new perspectives. Trends Parasitol. 2003;19:175–81.
Article
CAS
PubMed
Google Scholar
Alin MH, Kihamia CM, Bjorkman A, Bwijo BA, Premji Z, Mtey GJ, et al. Efficacy of oral and intravenous artesunate in male Tanzanian adults with Plasmodium falciparum malaria and in vitro susceptibility to artemisinin, chloroquine, and mefloquine. Am J Trop Med Hyg. 1995;53:639–45.
Article
CAS
PubMed
Google Scholar
Singh K, Agarwal A, Khan SI, Walker LA, Tekwani BL. Growth, drug susceptibility, and gene expression profiling of Plasmodium falciparum cultured in medium supplemented with human serum. J Biomol Screen. 2007;12:1109–14.
Article
CAS
PubMed
Google Scholar
Mberu EK, Mosobo MK, Nzila AM, Kokwaro GO, Sibley CH, Watkins WM. The changing in vitro susceptibility pattern to pyrimethamine/sulfadoxine in Plasmodium falciparum field isolates from Kilifi, Kenya. Am J Trop Med Hyg. 2000;62:396–401.
Article
CAS
PubMed
Google Scholar
Chaijaroenkul W, Na Bangchang K, Mungthin M, Ward SA. In vitro antimalarial drug susceptibility in Thai border areas from 1998–2003. Malar J. 2005;4:37.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chaorattanakawee S, Tyner SD, Lon C, Yingyuen K, Ruttvisutinunt W, Sundrakes S, et al. Direct comparison of the histidine-rich protein-2 enzyme-linked immunosorbent assay (HRP-2 ELISA) and malaria SYBR green I fluorescence (MSF) drug sensitivity tests in Plasmodium falciparum reference clones and fresh ex vivo field isolates from Cambodia. Malar J. 2013;12:239.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bacon DJ, Latour C, Lucas C, Colina O, Ringwald P, Picot S. Comparison of a SYBR green I-based assay with a histidine-rich protein II enzyme-linked immunosorbent assay for in vitro antimalarial drug efficacy testing and application to clinical isolates. Antimicrob Agents Chemother. 2007;51:1172–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bhatia R, Gautam A, Gautam SK, Mehta D, Kumar V, Raghava GPS, et al. Assessment of SYBR green I dye-based fluorescence assay for screening antimalarial activity of cationic peptides and DNA intercalating agents. Antimicrob Agents Chemother. 2015;59:2886–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smilkstein M, Sriwilaijaroen N, Kelly JX, Wilairat P, Riscoe M. Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob Agents Chemother. 2004;48:1803–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwartz A, Baidjoe A, Rosenthal PJ, Dorsey G, Bousema T, Greenhouse B. The effect of storage and extraction methods on amplification of Plasmodium falciparum DNA from dried blood spots. Am J Trop Med Hyg. 2015;92:922–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muhamad P, Chaijaroenkul W, Congpuong K, Na-Bangchang K. SYBR green I and Taqman quantitative real-time polymerase chain reaction methods for the determination of amplification of Plasmodium falciparum multidrug resistance-1 gene (PFMDR1). J Parasitol. 2011;97:939–42.
Article
PubMed
Google Scholar
Achidi EA, Agbenyega T, Allen S, Amodu O, Bojang K, Conway D, et al. A global network for investigating the genomic epidemiology of malaria. Nature. 2008;456:732–7.
Article
CAS
Google Scholar
MalariaGEN Plasmodium falciparum Community Project. Genomic epidemiology of artemisinin resistant malaria. Elife. 2016. https://doi.org/10.7554/eLife.08714.
Google Scholar
East African Network for Monitoring Antimalarial Treatment (EANMAT). Monitoring antimalarial drug resistance within National Malaria Control Programmes: the EANMAT experience. Trop Med Int Health. 2001;6:891–8.
Article
Google Scholar
East African Network for Monitoring Antimalarial Treatment (EANMAT). The efficacy of antimalarial monotherapies, sulphadoxine-pyrimethamine and amodiaquine in East Africa: implications for sub-regional policy. Trop Med Int Health. 2003;8:860–7.
Article
Google Scholar
WHO/PAHO. PAHO-USAID Partnership to fight malaria in the Amazon. 2017. http://www2.paho.org/hq/index.php?option=com_content&view=article&id=2231&Itemid=2150&lang=en. Accessed 31 May 2017.
Halsey ES, Venkatesan M, Plucinski MM, Talundzic E, Lucchi NW, Zhou Z, et al. Capacity development through the US President’s malaria initiative-supported antimalarial resistance monitoring in Africa network. Emerg Infect Dis. 2017. https://doi.org/10.3201/eid2313.170366.
Google Scholar