Skip to content

Advertisement

  • Research
  • Open Access

Prevalence of molecular markers of sulfadoxine–pyrimethamine and artemisinin resistance in Plasmodium falciparum from Pakistan

  • 1,
  • 2,
  • 1,
  • 3,
  • 4,
  • 4,
  • 4,
  • 1 and
  • 4Email authorView ORCID ID profile
Malaria Journal201817:471

https://doi.org/10.1186/s12936-018-2620-y

  • Received: 18 October 2018
  • Accepted: 8 December 2018
  • Published:

Abstract

Background

In Pakistan, artesunate (AS) in combination with sulfadoxine–pyrimethamine (SP) is the recommended treatment for uncomplicated Plasmodium falciparum malaria. Monitoring molecular markers of anti-malarial drug resistance is crucial for early detection and containment of parasite resistance to treatment. Currently, no data are available on molecular markers of artemisinin resistance (K13 mutations) in P. falciparum isolates from Pakistan. In this study, the prevalence of mutations associated with SP and artemisinin resistance was estimated in different regions of Pakistan.

Methods

A total of 845 blood samples that were positive for malaria parasites by microscopy or rapid diagnostic test were collected from January 2016 to February 2017 from 16 different sites in Pakistan. Of these samples, 300 were positive for P. falciparum by PCR. Polymorphisms in the P. falciparum dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) genes were identified by pyrosequencing while polymorphisms in the propeller domain of the pfk13 gene were identified by Sanger sequencing.

Results

The prevalence of the PfDHFR 108N and 59R mutations was 100% and 98.8%, respectively, while the prevalence of PfDHFR 50R and 51I mutations was 8.6%. No mutation was observed at PfDHFR position 164. In PfDHPS, the prevalence of mutations at positions 436, 437, and 613 was 9.9%, 45.2%, and 0.4%, respectively. No mutations were found at PfDHPS positions 540 and 581. The prevalence of double PfDHFR mutants (59R + 108N) ranged from 93.8% to 100%, while the prevalence of parasites having the PfDHFR 59R + 108N mutations in addition to the PfDHPS 437G mutation ranged from 9.5% to 83.3% across different regions of Pakistan. Nine non-synonymous and four synonymous mutations were observed in the PfK13 propeller domain, none of which correspond to mutations validated to contribute to artemisinin resistance.

Conclusion

The absence of the highly resistant PfDHFR/PfDHPS quintuple mutant parasites and the lack of PfK13 mutations associated with artemisinin resistance is consistent with AS + SP being effective in Pakistan.

Keywords

  • Malaria
  • Plasmodium falciparum
  • Drug resistance
  • Pakistan

Background

Malaria is a devastating disease affecting people in 91 countries with about half of the global population at risk [1]. In 2016, an estimated 216 million cases of malaria occurred worldwide resulting in an estimated 445,000 deaths [1]. Malaria transmission is moderate in Pakistan with 177 million people at risk [2]. Plasmodium vivax is the most prevalent species of Plasmodium in Pakistan, accounting for 79% of malaria cases in 2016, followed by Plasmodium falciparum which was responsible for the remaining 21% of malaria cases [1]. The emergence and spread of resistance to anti-malarial drugs is challenging for malaria control [3]. Plasmodium falciparum has developed resistance to all anti-malarial drugs during the past 50 years [4]. In Pakistan, artemisinin-based combination therapy (ACT) with artesunate plus sulfadoxine–pyrimethamine (AS + SP) has been the first-line treatment for uncomplicated falciparum malaria since 2007.

Studies have shown that single nucleotide polymorphisms (SNPs) in the dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) genes of P. falciparum confer resistance to pyrimethamine and sulfadoxine, respectively [58]. PfDHFR mutations C50R, N51I, C59R, S108N, and I164L are associated with resistance to pyrimethamine, while PfDHPS mutations S436A/F, A437G, K540E, A581G and A613S/T are associated with resistance to sulfadoxine [913]. The presence of a triple mutation in PfDHFR (51I+59R+108N) has been associated with SP treatment failure [1416], as has the combination of PfDHFR triple mutant (51I+59R+108N) and PfDHPS double mutant (437G+540E) (i.e. the “quintuple mutant”) [17, 18]. A high prevalence of PfDHFR double mutants (59R + 108N) ranging from 87 to 100% has been reported in previous studies in Pakistan [1922]. This PfDHFR double mutant (59R + 108N) in combination with the PfDHPS 437G mutation is the next most prominent combination of mutations reported in Pakistan with prevalence ranging from 31.8 to 69% [1922].

Artemisinin resistance has been detected along the Thailand-Cambodia border, in Vietnam, Myanmar, and other countries in Southeast Asia [23]. Delayed parasite clearance was first observed in P. falciparum-infected patients in Cambodia about 10 years ago [24, 25]. Specific mutations in the propeller domain of the PfK13 protein (PF3D7_1343700) have been shown to confer resistance to the artemisinins [26, 27], with several different polymorphisms associated with the resistant phenotype [23, 28, 29]. This study aims to investigate the prevalence of PfDHFR and PfDHPS alleles associated with SP resistance and to identify SNPs located within the PfK13 protein in Pakistan.

Methods

Study sites and ethical considerations

Symptomatic febrile patients who visited government or private hospitals at 16 different sites within Pakistan from January 2016 to February 2017 were enrolled in the study (Fig. 1). Informed consent and/or assent were obtained from study participants or their legal guardian. Demographic characteristics including age and gender were recorded. The study was approved by the Institutional Review Board of the University of Gujrat, Pakistan.
Fig. 1
Fig. 1

Geographic location of sample collection sites in 16 different areas of Pakistan. Red dots indicate the areas from where samples were collected

Sample collection

Blood samples (3 mL) were collected from symptomatic patients. Samples testing positive for any malaria parasites by microscopy or for P. falciparum (mono-infection or mixed) by a rapid diagnostic test (Fastep Malaria (pf/pv), Carestart ™ Malaria HRP2/pLDH (pf/pv) combo) were included in the study. Fifty microlitres of whole blood was spotted on Whatman 3MM filter paper. Filter papers were dried, sealed in individual plastic bags with a desiccant and kept at room temperature.

DNA extraction and speciation

Parasite DNA was extracted from filter papers using a previously published extraction method [30]. Extracted DNA was stored at − 80 °C. Speciation was performed by real-time multiplex PCR for P. falciparum and P. vivax with modifications [31]. PCR-positive samples for P. falciparum were used to assess polymorphisms in the genes encoding PfDHFR, PfDHPS and PfK13.

Pyrosequencing of pfdhfr and pfdhps mutations

Amplification of a region of the pfdhfr gene encoding mutations C50R, N51I, C59R, S108N and I164L and a region of the pfdhps gene encoding mutations S436A, A437G, K540E, A581G and A613T/S was conducted by PCR using previously described cycling conditions [32] with a few modifications. Briefly, a 25 µL reaction volume was used for the primary PCR reaction which contained 1 μL of DNA template, 1× PCR buffer (Qiagen, Valencia, CA, USA), 0.2 mM dNTPs (Invitrogen), 1.5 mM magnesium chloride, 0.5 µM of each forward and reverse primer and 0.05 U/µL HotStar Taq DNA polymerase (Qiagen, Valencia, CA, USA). The secondary PCR reaction was prepared in a 50 μL reaction volume, containing 2 µL of primary PCR product, 1× PCR buffer (Qiagen Valencia, CA, USA), 0.2 mM dNTPs (Invitrogen), 1.5 mM magnesium chloride, 0.5 µM of each forward and reverse primer and 0.05 U/µL HotStar Taq DNA polymerase (Qiagen, Valencia, CA, USA). The PCR was performed using a BioRadC1000 or T100 Thermal cycler (Bio-Rad, Hercules, CA). A PyroMark® Q96 MD Pyrosequencer was used for genotyping all codons of interest using a published protocol [32]. 4 μL of secondary PCR product or amplified sequence-specific positive control DNA (BEI Resources, Manassas, Virginia, USA) were used for each pyrosequencing reaction. Single nucleotide polymorphisms (SNPs) were called using PyroMark® Q96 MD pyrosequencing software version 1.2 (Qiagen) in allele quantification mode (AQ) for all SNPs. Peak signal of at least 30 RLU (relative luminescence units) was set as the cut-off for allele quantification. The pyrosequencing reaction was repeated with an adjusted volume of secondary PCR product for samples that failed to produce a SNP call because of either too much or insufficient DNA. Pyrosequencing allele frequencies were adjusted using a standard curve. Standard curve data was generated from pyrosequencing of mixtures of control DNA strains with known proportions of each allele [33]. An allele was considered present in the infection if its frequency after adjustment to the standard curve was above 10%.

Amplification and sequencing of pfk13 propeller domain

The gene encoding PfK13 was amplified using Taq2X mastermix (New England BioLabs Inc., USA) in a 25 µL reaction using 12.5 µL of Taq2X mastermix, 1 µL of each 10 µM primer, 5.5 µL nuclease free water and 5 µL template DNA. The PCR thermal cycling conditions for the first round of nested PCR were 94 °C for 5 min followed by 40 cycles of 30 s at 94 °C, 90 s at 54 °C, 90 s at 68 °C and final extension at 68 °C for 10 min. 2 µL of primary PCR product was used as template in the secondary PCR using the same cycling conditions and primer set used previously [26]. PCR products were purified using multiscreen purification plates (Merck Millipore). The sequencing reaction was done using BigDye terminator v3.1 (Thermo Fisher Scientific), with sequencing performed on a 3730xl capillary sequencer (Applied Biosystems). Sequences were edited using Sequencher 5.1® and BioEdit 7.2.6. The sequence from 3D7 strain (PF3D7_1343700) was used as the reference.

Results

A total of 845 RDT/microscopy-positive samples were tested out of which 300 (238 mono-infection and 62 P. falciparum and P. vivax mixed infection) samples were PCR-positive for P. falciparum. The distribution of P. falciparum PCR-positive samples across different regions of Pakistan is listed in Table 1. Participants ranged in age from 1 to 65 years with a median age of 28 years.
Table 1

Distribution of samples collected from 16 Pakistani sites

Province

Site

Total samples

PCR-confirmed P. falciparum

n

%

Khyber Pakhtunkhwa (KPK)

Bannu

147

40

27.2

Hangu

17

14

82.4

Peshawar

85

14

16.5

Thall

29

25

86.2

Balochistan

Sui

7

4

57.1

Quetta

43

29

67.4

Deramurad Jamali

45

15

31.9

Zhob

5

4

80.0

FATAa

Khyber Agency

74

57

77.0

Punjab

Rawalpindi

16

10

62.5

Muzafargarh

58

19

32.8

Multan

106

25

23.6

Dera Ghazi Khan

23

9

39.1

Kot Chutta

43

11

25.6

Rajanpur

45

14

31.1

Sindh

Karachi

102

10

9.8

Total

 

845

300

35.5

aFederally administered tribal areas (FATA) is not a province

Overall prevalence of PfDHFR and PfDHPS mutations

Pyrosequencing of mutations within the genes encoding PfDHFR and PfDHPS revealed that overall, the most prevalent PfDHFR mutation was at amino acid position 108 with 100% of infections containing the 108N allele, followed by the 59R mutation, which was observed in 98.8% of infections. 8.6% of infections contained the 50R and 51I mutations, while no mutations were found at PfDHFR position 164. The most prevalent PfDHPS mutation was 437G, with 45.2% of infections harboring this allele. The prevalence of PfDHPS 436A was 9.9%, and only 0.4% of infections contained parasites with 613T mutation. No mutations were found at PfDHPS positions 540 or 581 (Fig. 2).
Fig. 2
Fig. 2

Prevalence of PfDHFR and PfDHPS mutations across all study sites in Pakistan. Amino acid positions are shown on x-axis, while the proportion of infections containing a mutation at a given position is shown on the y-axis. Error bars indicate the standard error

Prevalence of PfDHFR and PfDHPS mutations by region

Across all study sites, 100% of infections contained the PfDHFR 108N mutation. The prevalence of PfDHFR 59R ranged from 98% in Balochistan to 100% in Sindh and FATA. The prevalence of the PfDHFR 50R and 51I mutations ranged from 3.6% to 14.3% in KPK and FATA, respectively, while no mutation at these positions was found in samples from Sindh. PfDHPS 437G had the highest prevalence (91.7%) in Balochistan and the lowest prevalence in FATA (10.9%). The prevalence of PfDHPS 436A ranged from 6.5% to 14.3% in FATA and Balochistan, respectively, while this mutation was not observed in Sindh. The mutation at PfDHPS position 613 was only observed in Punjab with a prevalence of 1.6% (Fig. 3, Additional file 1).
Fig. 3
Fig. 3

Distribution of PfDHFR and PfDHPS mutant alleles in different regions of Pakistan. Amino acid positions and geographic regions are shown on x-axis, while the proportion of infections containing a mutation at a given position is shown on the y-axis. Error bars indicate the standard error

The prevalence of the PfDHFR double mutant (PfDHFR 59R + 108N) was highest (100%) in Sindh, and lowest (93.8%) in Punjab. No PfDHFR triple mutant (51I + 59R + 108N) parasites were found at any site. The prevalence of parasites with PfDHFR 59R + 108N plus PfDHPS 437G was highest (83.3%) in Balochistan and lowest (9.5%) in FATA (Table 2).
Table 2

Distribution of mutant PfDHFR and PfDHPS haplotypes of Pakistani P. falciparum isolates

 

PfDHFR 59R + 108N (n)

PfDHFR 59R + 108N/PfDHPS 437G (n)

KPK

98.8% (83)

28.9% (83)

Balochistan

93.9% (49)

83.3% (48)

FATA

97.6% (42)

9.5% (42)

Punjab

93.8% (64)

45.2% (62)

Sindh

100% (3)

33.3% (3)

Prevalence of PfK13 mutations

Out of 300 PCR-positive samples, 209 were successfully sequenced at Pfk13. Nine non-synonymous and four synonymous mutations were observed. The S624S, L678L and S679L PfK13 mutations were unique to Pakistani parasites while the C473Y, E509D, P553P, V637I and G638R PfK13 mutations have been previously reported. The R513P, G544G, A557T, P615L and P701L PfK13 mutations were found to have different amino acid substitutions in samples collected from Pakistan compared to previously reported mutations at these positions from other geographic regions. The prevalence of PfK13 mutations is shown in Table 3. None of the mutations found in this study corresponded to mutations validated to be associated with artemisinin resistance (Fig. 4).
Table 3

Prevalence of K13-propeller domain mutations in clinical P. falciparum isolates from Pakistan

Mutant codon position

Type of mutation

Prevalence of mutation  % (n)

References

C473Y

NS

0.7 (n = 1)

[44]

E509D

NS

0.7 (n = 1)

[47]

R513P

NS

0.7 (n = 1)

[48]

G544G

S

0.7 (n = 1)

[48]

P553P

S

0.96 (n = 2)

[49]

A557T

NS

0.7 (n = 1)

[50]

P615L

NS

0.7 (n = 1)

[44]

S624S

S

0.7 (n = 1)

*

V637I

NS

0.7 (n = 1)

[51]

G638R

NS

0.7 (n = 1)

[52]

L678L

S

0.7 (n = 1)

*

S679L

NS

0.7 (n = 1)

*

P701L

NS

0.7 (n = 1)

[53]

* Mutation not found in literature. Mutations in italics indicate amino acid positions where mutations have been observed previously, but different alleles were present at these positions in the samples from Pakistan compared to those reported in other geographic regions

Fig. 4
Fig. 4

Amino acid sequence alignment of PfK13 haplotypes. Haplotypes observed in this study are highlighted in grey. Numbers in the top row are amino acid positions. Positions highlighted in yellow have been associated with delayed parasite clearance in previous studies, with mutations validated for their role in artemisinin resistance marked with an asterisk. Positions highlighted in green represent non-synonymous mutations identified in this study

Discussion

Anti-malarial drug resistance is a major public health concern and regular monitoring of resistance using molecular markers is essential to track changes in the distribution of resistant parasites and to inform treatment policy. In this study, the prevalence of polymorphisms associated with P. falciparum resistance to sulfadoxine–pyrimethamine and artesunate, the drugs included in the first-line ACT in Pakistan, was estimated, namely mutations within the genes encoding PfDHFR, PfDHPS, and PfK13. This study indicates a fixation of the PfDHFR 108N mutation across all study sites, with the PfDHFR double mutant (59R + 108N) near fixation. These results are consistent with those from a study in 2009 that reported a 100% prevalence of this PfDHFR double mutant (59R + 108N) in the Bannu district of the KPK province of Pakistan [19]. Likewise, a study in southern Pakistan reported 87% prevalence of PfDHFR double mutants (59R + 108N) in 2011 [20]. A survey conducted in 2013 across different cities of Pakistan reported an 87% prevalence of the PfDHFR double mutant [21]. Moreover, a therapeutic efficacy study conducted in Zhob, Kech, Khairpur, Thatta, Khrram agency, and Khyber agency also reported near fixation of the PfDHFR double mutant [22]. Similar results have also been reported in the neighboring countries of Iran [34], Afghanistan [35], India [36] and China [37].

The prevalence of the PfDHPS 437G mutation in FATA in this study was 10.9% which is lower than a previously reported prevalence of 38% in samples collected in 2012 from FATA [22]. In addition, the prevalence of parasites with PfDHFR 59R + 108N and PfDHPS 437G was 28.9% in KPK in this study, lower than the previously reported prevalence of 51% in KPK in 2013 [21]. Likewise in FATA the prevalence of this PfDHFR 59R + 108N + PfDHPS 437G mutant was 9.5%, which is lower than the previously reported prevalence of 38% at this site in 2012 [22]. A similar decrease in the prevalence of the PfDHFR 59R + 108N + PfDHPS 437G mutants was observed in Iran where the prevalence of this haplotype dropped from 53.3% in 2008 to 38% in 2010 after the introduction of the ACT AS + SP [38]. Such reductions in the prevalence of SP resistance mutations could possibly be due to reduced SP pressure resulting from the combination of SP with AS and the rapid clearance of P. falciparum by the artemisinin component [34].

In contrast, the prevalence of the PfDHPS 437G mutation in this study was higher (91.7%) in Balochistan than reported in previous studies in Balochistan in parasites collected from 2007 to 2012 (70%) [22] and from 2005 to 2007 (60%) [20]. Likewise, the prevalence of the PfDHFR 59R + 108N + PfDHPS 437G mutant in Balochistan was higher in this study (83.3%) than in previous studies that reported prevalences of 69% [22], 58% [21], and 55% in Balochistan [20]. These observations are consistent with findings from Malawi where the prevalence of SP resistance markers remained high 5 years after reducing SP drug pressure following a change in drug policy to use of ACT [33].

The PfDHFR triple mutant (51I + 59R + 108N), quadruple mutant (PfDHFR 51I + 59R + 108N and PfDHPS 437G), and quintuple mutant (PfDHFR 51I + 59R + 108N and PfDHPS 437G + 540E) were not observed in this study. The highly-resistant quintuple mutant has been associated with SP failure [17]. Historically, importation has played a pivotal role in establishing resistance to chloroquine and SP in Africa [39]. Molecular epidemiological studies examining microsatellite markers flanking the pfdhfr gene revealed that pyrimethamine resistance was transferred from Southeast Asia to Africa [40]. It has also been shown that PfDHFR mutants in India share ancestry with Southeast Asian PfDHFR mutants [41]. The lack of PfDHFR triple mutants in Pakistan could suggest that this triple mutant parasite has not yet been introduced in Pakistan.

Polymorphisms in the PfK13 propeller domain have been identified as a useful molecular markers for surveillance of artemisinin resistance in Southeast Asia. More than 200 non-synonymous mutations in the PfK13 propeller domain have been reported, but not all these mutations have been associated with artemisinin resistance [42]. N458Y, Y493H, R539T, I543T and C580Y are the molecular markers for artemisinin resistance which have been validated by in vitro and in vivo studies while P441L, F446I, G449A, G538V, P553L, R561H, V568G, P574L, A578S and A675V are candidate markers of artemisinin resistance [42]. This is the first study from Pakistan to estimate the prevalence of PfK13 propeller mutations. Low frequencies of PfK13 propeller mutations (6.2%) were found, and none of the mutations corresponded to SNPs associated with artemisinin resistance in Southeast Asia [26]. A low frequency of PfK13 mutations has been found in countries adjacent to Pakistan [4345], with the exception of China where a high prevalence of PfK13 mutations has been observed in multiple studies along the China-Myanmar border, F446I being the predominant PfK13 mutation [29, 46]. Absence of PfK13 mutations which are associated with reduced susceptibility to artemisinins suggests that P. falciparum is still sensitive to artemisinin-based combination therapy in Pakistan, consistent with the findings of previous therapeutic efficacy studies conducted at sentinel sites in Pakistan from 2007–2012 that demonstrated 98.5–100% adequate clinical and parasitological response [22].

Conclusion

These findings suggest that the PfDHFR 108N mutation is fixed and PfDHFR double mutation (59R + 108N) is near fixation. In addition, an absence of mutations conferring a high-level of resistance to SP and the artemisinins suggest that artesunate plus SP is still efficacious for the treatment of uncomplicated P. falciparum malaria in Pakistan. However, the systematic monitoring of PfDHFR, PfDHPS and PfK13 molecular markers should continue as long as this artemisinin-based combination is used.

Declarations

Authors’ contributions

AY designed study, carried out the laboratory experiments, performed data analysis and drafted the manuscript. AAK helped in drafting study design. MFN and HF participated in collection of samples and corresponding metadata. MA provided technical guidance for laboratory experiments. AO did initial editing of the manuscript. GM helped in setting up laboratory experiments. NZ provided guidance and coordination of the study design. ST-H provided guidance on analysis and interpretation of the data, reviewed and finalized the manuscript. All authors read and approved the final manuscript.

Acknowledgements

The authors thank the study participants for their involvement in the study. The authors would also like to thank Sudhaunshu Joshi for his technical assistance in performing pyrosequencing. The authors acknowledge Antoine Dara, Biraj Shrestha and Zalak Shah at the University of Maryland for their valuable input and suggestions. Authors thank Majid Bukhari, Muhammad Arif Gadola, Shahid Hashmi, Muhammad Ibraheem, Rao Gulsher, Nadir Abbas, Muhammad Asim Ansari, Asif Khattak, Mustafa Afridi and Sheikh Ahmad for their help in sample collection.

Competing interests

The authors declare that they have no competing interests.

Availability of data

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Consent for publication

Not applicable.

Ethics approval and consent to participate

This study was approved by Institutional Review Board of the University of Gujrat, Gujrat, Pakistan. Informed consent and/or assent were obtained from study patients or their legal guardian.

Funding

This work was supported by a grant from the Higher Education Commission of Pakistan in support of AY’s Ph.D. studies at University of Gujrat, Gujrat, Pakistan and NIH R01 AI125579 to ST-H.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Authors’ Affiliations

(1)
Department of Biochemistry & Biotechnology, University of Gujrat, Gujrat, Pakistan
(2)
Department of Medical Laboratory Technology, University of Haripur, Haripur, KPK, Pakistan
(3)
Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
(4)
Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, USA

References

  1. WHO. World Malaria Report 2017. Geneva: World Health Organization, 2017. https://www.who.int/malaria/publications/world-malaria-report-2017/en/. Accessed 18 March 2018.
  2. Directorate of Malaria Control, Pakistan. Malaria Control Programme. 2018. http://dmc.gov.pk/. Accessed 18 March 2018.
  3. Petersen I, Eastman R, Lanzer M. Drug-resistant malaria: molecular mechanisms and implications for public health. FEBS Lett. 2011;585:1551–62.View ArticleGoogle Scholar
  4. Thu AM, Phyo AP, Landier J, Parker DM, Nosten FH. Combating multidrug-resistant Plasmodium falciparum malaria. FEBS J. 2017;284:2569–78.View ArticleGoogle Scholar
  5. Roper C, Pearce R, Bredenkamp B, Gumede J, Drakeley C, Mosha F, Chandramohan D, Sharp B. Antifolate antimalarial resistance in southeast Africa: a population-based analysis. Lancet. 2003;361:1174–81.View ArticleGoogle Scholar
  6. Plowe CV, Cortese JF, Djimde A, Nwanyanwu OC, Watkins WM, Winstanley PA, et al. Mutations in Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthase and epidemiologic patterns of pyrimethamine–sulfadoxine use and resistance. J Infect Dis. 1997;176:1590–6.View ArticleGoogle Scholar
  7. Plowe CV, Djimde A, Bouare M, Doumbo O, Wellems TE. Pyrimethamine and proguanil resistance-conferring mutations in Plasmodium falciparum dihydrofolate reductase: polymerase chain reaction methods for surveillance in Africa. Am J Trop Med Hyg. 1995;52:565–8.View ArticleGoogle Scholar
  8. Plowe CV, Kublin JG, Doumbo OKP. P. falciparum dihydrofolate reductase and dihydropteroate synthase mutations: epidemiology and role in clinical resistance to antifolates. Drug Resist Updat. 1998;1:389–96.View ArticleGoogle Scholar
  9. Cowman AF, Morry MJ, Biggs BA, Cross GA, Foote SJ. Amino acid changes linked to pyrimethamine resistance in the dihydrofolate reductase-thymidylate synthase gene of Plasmodium falciparum. Proc Natl Acad Sci USA. 1988;85:9109–13.View ArticleGoogle Scholar
  10. Peterson DS, Milhous WK, Wellems TE. Molecular basis of differential resistance to cycloguanil and pyrimethamine in Plasmodium falciparum malaria. Proc Natl Acad Sci USA. 1990;87:3018–22.View ArticleGoogle Scholar
  11. Zolg JW, Plitt JR, Chen GX, Palmer S. Point mutations in the dihydrofolate reductase-thymidylate synthase gene as the molecular basis for pyrimethamine resistance in Plasmodium falciparum. Mol Biochem Parasitol. 1989;36:253–62.View ArticleGoogle Scholar
  12. Kun JF, Lehman LG, Lell B, Schmidt-Ott R, Kremsner PG. Low-dose treatment with sulfadoxine–pyrimethamine combinations selects for drug-resistant Plasmodium falciparum strains. Antimicrob Agents Chemother. 1999;43:2205–8.View ArticleGoogle Scholar
  13. Snewin VA, England SM, Sims PF, Hyde JE. Characterisation of the dihydrofolate reductase-thymidylate synthetase gene from human malaria parasites highly resistant to pyrimethamine. Gene. 1989;76:41–52.View ArticleGoogle Scholar
  14. Basco LK, Ringwald P. Molecular epidemiology of malaria in Yaounde, Cameroon. VI. Sequence variations in the Plasmodium falciparum dihydrofolate reductase-thymidylate synthase gene and in vitro resistance to pyrimethamine and cycloguanil. Am J Trop Med Hyg. 2000;62:271–6.View ArticleGoogle Scholar
  15. Mombo-Ngoma G, Oyakhirome S, Ord R, Gabor JJ, Greutelaers KC, Profanter K, et al. High prevalence of dhfr triple mutant and correlation with high rates of sulphadoxine-pyrimethamine treatment failures in vivo in Gabonese children. Malar J. 2011;10:123.View ArticleGoogle Scholar
  16. Mugittu K, Ndejembi M, Malisa A, Lemnge M, Premji Z, Mwita A, et al. Therapeutic efficacy of sulfadoxine–pyrimethamine and prevalence of resistance markers in Tanzania prior to revision of malaria treatment policy: Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthase mutations in monitoring in vivo resistance. Am J Trop Med Hyg. 2004;71:696–702.View ArticleGoogle Scholar
  17. Kublin JG, Dzinjalamala FK, Kamwendo DD, Malkin EM, Cortese JF, Martino LM, et al. Molecular markers for failure of sulfadoxine–pyrimethamine and chlorproguanil-dapsone treatment of Plasmodium falciparum malaria. J Infect Dis. 2002;185:380–8.View ArticleGoogle Scholar
  18. Omar SA, Adagu IS, Warhurst DC. Can pretreatment screening for dhps and dhfr point mutations in Plasmodium falciparum infections be used to predict sulfadoxine–pyrimethamine treatment failure? Trans R Soc Trop Med Hyg. 2001;95:315–9.View ArticleGoogle Scholar
  19. Khatoon L, Baliraine FN, Bonizzoni M, Malik SA, Yan G. Prevalence of antimalarial drug resistance mutations in Plasmodium vivax and P. falciparum from a malaria-endemic area of Pakistan. Am J Trop Med Hyg. 2009;81:525–8.View ArticleGoogle Scholar
  20. Ghanchi NK, Ursing J, Beg MA, Veiga MI, Jafri S, Martensson A. Prevalence of resistance associated polymorphisms in Plasmodium falciparum field isolates from southern Pakistan. Malar J. 2011;10:18.View ArticleGoogle Scholar
  21. Khattak AA, Venkatesan M, Jacob CG, Artimovich EM, Nadeem MF, Nighat F, et al. A comprehensive survey of polymorphisms conferring anti-malarial resistance in Plasmodium falciparum across Pakistan. Malar J. 2013;12:300.View ArticleGoogle Scholar
  22. Kakar Q, Sheikh S, Ahmed I, Khan MA, Jamil M, El Mohammady H, et al. Efficacy of artemisinin-based combination therapies for the treatment of falciparum malaria in Pakistan (2007–2015): in vivo response and dhfr and dhps mutations. Acta Trop. 2016;164:17–22.View ArticleGoogle Scholar
  23. Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:411–23.View ArticleGoogle Scholar
  24. Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM. Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med. 2008;359:2619–20.View ArticleGoogle Scholar
  25. Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009;361:455–67.View ArticleGoogle Scholar
  26. Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois AC, Khim N, Kim S, Duru V, Bouchier C, Ma L, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505:50–5.View ArticleGoogle Scholar
  27. Straimer J, Gnadig NF, Witkowski B, Amaratunga C, Duru V, Ramadani AP, et al. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science. 2015;347:428–31.View ArticleGoogle Scholar
  28. Takala-Harrison S, Jacob CG, Arze C, Cummings MP, Silva JC, Dondorp AM, et al. Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. J Infect Dis. 2015;211:670–9.View ArticleGoogle Scholar
  29. Huang F, Takala-Harrison S, Jacob CG, Liu H, Sun X, Yang H, et al. A single mutation in K13 predominates in Southern China and is associated with delayed clearance of Plasmodium falciparum following artemisinin treatment. J Infect Dis. 2015;212:1629–35.View ArticleGoogle Scholar
  30. Zainabadi K, Adams M, Han ZY, Lwin HW, Han KT, Ouattara A, et al. A novel method for extracting nucleic acids from dried blood spots for ultrasensitive detection of low-density Plasmodium falciparum and Plasmodium vivax infections. Malar J. 2017;16:377.View ArticleGoogle Scholar
  31. Adams M, Joshi SN, Mbambo G, Mu AZ, Roemmich SM, Shrestha B, et al. An ultrasensitive reverse transcription polymerase chain reaction assay to detect asymptomatic low-density Plasmodium falciparum and Plasmodium vivax infections in small volume blood samples. Malar J. 2015;14:520.View ArticleGoogle Scholar
  32. Zhou Z, Poe AC, Limor J, Grady KK, Goldman I, McCollum AM, et al. Pyrosequencing, a high-throughput method for detecting single nucleotide polymorphisms in the dihydrofolate reductase and dihydropteroate synthetase genes of Plasmodium falciparum. J Clin Microbiol. 2006;44:3900–10.View ArticleGoogle Scholar
  33. Artimovich E, Schneider K, Taylor TE, Kublin JG, Dzinjalamala FK, Escalante AA, et al. Persistence of sulfadoxine–pyrimethamine resistance despite reduction of drug pressure in Malawi. J Infect Dis. 2015;212:694–701.View ArticleGoogle Scholar
  34. Rouhani M, Zakeri S, Pirahmadi S, Raeisi A, Djadid ND. High prevalence of pfdhfr–pfdhps triple mutations associated with anti-malarial drugs resistance in Plasmodium falciparum isolates seven years after the adoption of sulfadoxine–pyrimethamine in combination with artesunate as first-line treatment in Iran. Infect Genet Evol. 2015;31:183–9.View ArticleGoogle Scholar
  35. Awab GR, Imwong M, Pukrittayakamee S, Alim F, Hanpithakpong W, Tarning J, et al. Clinical trials of artesunate plus sulfadoxine–pyrimethamine for Plasmodium falciparum malaria in Afghanistan: maintained efficacy a decade after introduction. Malar J. 2016;15:121.View ArticleGoogle Scholar
  36. Mishra N, Srivastava B, Bharti RS, Rana R, Kaitholia K, Anvikar AR, et al. Monitoring the efficacy of antimalarial medicines in India via sentinel sites: outcomes and risk factors for treatment failure. J Vector Borne Dis. 2016;53:168–78.PubMedGoogle Scholar
  37. Zhang GQ, Guan YY, Zheng B, Wu S, Tang LH. Molecular assessment of Plasmodium falciparum resistance to antimalarial drugs in China. Trop Med Int Health. 2009;14:1266–71.View ArticleGoogle Scholar
  38. Afsharpad M, Zakeri S, Pirahmadi S, Djadid ND. Molecular monitoring of Plasmodium falciparum resistance to antimalarial drugs after adoption of sulfadoxine–pyrimethamine plus artesunate as the first line treatment in Iran. Acta Trop. 2012;121:13–8.View ArticleGoogle Scholar
  39. Lynch C, Pearce R, Pota H, Cox J, Abeku TA, Rwakimari J, Naidoo I, Tibenderana J, Roper C. Emergence of a dhfr mutation conferring high-level drug resistance in Plasmodium falciparum populations from southwest Uganda. J Infect Dis. 2008;197:1598–604.View ArticleGoogle Scholar
  40. Roper C, Pearce R, Nair S, Sharp B, Nosten F, Anderson T. Intercontinental spread of pyrimethamine-resistant malaria. Science. 2004;305:1124.View ArticleGoogle Scholar
  41. Lumb V, Das MK, Singh N, Dev V, Wajihullah, Sharma YD. Characteristics of genetic hitchhiking around dihydrofolate reductase gene associated with pyrimethamine resistance in Plasmodium falciparum isolates from India. Antimicrob Agents Chemother. 2009;53:5173–80.View ArticleGoogle Scholar
  42. WHO. Artemisinin and artemisinin-based combination therapy resistance. Geneva: World Health Organization, 2017. http://www.who.int/malaria/publications/atoz/artemisinin-resistance-april2017/en/. Accessed 18 March 2018.
  43. Awab GR, Pukrittayakamee S, Jamornthanyawat N, Yamin F, Dondorp AM, Day NP, et al. Prevalence of antifolate resistance mutations in Plasmodium falciparum isolates in Afghanistan. Malar J. 2013;12:96.View ArticleGoogle Scholar
  44. Menard D, Khim N, Beghain J, Adegnika AA, Shafiul-Alam M, Amodu O, et al. A worldwide map of Plasmodium falciparum K13-propeller polymorphisms. N Engl J Med. 2016;374:2453–64.View ArticleGoogle Scholar
  45. Mishra N, Bharti RS, Mallick P, Singh OP, Srivastava B, Rana R, et al. Emerging polymorphisms in falciparum Kelch 13 gene in Northeastern region of India. Malar J. 2016;15:583.View ArticleGoogle Scholar
  46. Ye R, Hu D, Zhang Y, Huang Y, Sun X, Wang J, et al. Distinctive origin of artemisinin-resistant Plasmodium falciparum on the China-Myanmar border. Sci Rep. 2016;6:20100.View ArticleGoogle Scholar
  47. Mvumbi DM, Bobanga TL, Kayembe JN, Mvumbi GL, Situakibanza HN, Benoit-Vical F, et al. Molecular surveillance of Plasmodium falciparum resistance to artemisinin-based combination therapies in the Democratic Republic of Congo. PLoS ONE. 2017;12:e0179142.View ArticleGoogle Scholar
  48. Taylor SM, Parobek CM, DeConti DK, Kayentao K, Coulibaly SO, Greenwood BM, Tagbor H, Williams J, Bojang K, Njie F, et al. Absence of putative artemisinin resistance mutations among Plasmodium falciparum in Sub-Saharan Africa: a molecular epidemiologic study. J Infect Dis. 2015;211:680–8.View ArticleGoogle Scholar
  49. Muwanguzi J, Henriques G, Sawa P, Bousema T, Sutherland CJ, Beshir KB. Lack of K13 mutations in Plasmodium falciparum persisting after artemisinin combination therapy treatment of Kenyan children. Malar J. 2016;15:36.View ArticleGoogle Scholar
  50. MalariaGEN Plasmodium falciparum Community Project. Genomic epidemiology of artemisinin resistant malaria. Elife. 2016;5:e08714.View ArticleGoogle Scholar
  51. Boussaroque A, Fall B, Madamet M, Camara C, Benoit N, Fall M, et al. Emergence of mutations in the K13 propeller gene of Plasmodium falciparum isolates from Dakar, Senegal, in 2013–2014. Antimicrob Agents Chemother. 2016;60:624–7.View ArticleGoogle Scholar
  52. Dama S, Niangaly H, Ouattara A, Sagara I, Sissoko S, Traore OB, et al. Reduced ex vivo susceptibility of Plasmodium falciparum after oral artemether–lumefantrine treatment in Mali. Malar J. 2017;16:59.View ArticleGoogle Scholar
  53. Das MK, Kalita MC, Chetry S, Dutta P. K13 Kelch propeller domain and mdr1 sequence polymorphism in field isolates from northeast region, India. Human Parasit Dis. 2017;9:1–9.Google Scholar

Copyright

© The Author(s) 2018

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate. Please note that comments may be removed without notice if they are flagged by another user or do not comply with our community guidelines.

Advertisement