Lee SJ, Ter Kuile FO, Price RN, Luxemburger C, Nosten F. Adverse effects of mefloquine for the treatment of uncomplicated malaria in Thailand: a pooled analysis of 19,850 individual patients. PLoS ONE. 2017;12:e0168780.
Article
PubMed
PubMed Central
CAS
Google Scholar
Eick-Cost AA, Hu Z, Rohrbeck P, Clark LL. Neuropsychiatric outcomes after mefloquine exposure among US Military service members. Am J Trop Med Hyg. 2017;96:159–66.
Article
PubMed
PubMed Central
Google Scholar
Ringqvist A, Bech P, Glenthoj B, Petersen E. Acute and long-term psychiatric side effects of mefloquine: a follow-up on Danish adverse event reports. Travel Med Infect Dis. 2015;13:80–8.
Article
PubMed
Google Scholar
Toovey S. Mefloquine neurotoxicity: a literature review. Travel Med Infect Dis. 2009;7:2–6.
Article
PubMed
Google Scholar
Bitta MA, Kariuki SM, Mwita C, Gwer S, Mwai L, Newton C. Antimalarial drugs and the prevalence of mental and neurological manifestations: a systematic review and meta-analysis. Wellcome Open Res. 2017;2:13.
Article
PubMed
PubMed Central
Google Scholar
Dow GS, Liu J, Lin G, Hetzell B, Thieling S, McCarthy WF, et al. Summary of anti-malarial prophylactic efficacy of tafenoquine from three placebo-controlled studies of residents of malaria-endemic countries. Malar J. 2015;14:473.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nasveld PE, Edstein MD, Reid M, Brennan L, Harris IE, Kitchener SJ, et al. Randomized, double-blind study of the safety, tolerability, and efficacy of tafenoquine versus mefloquine for malaria prophylaxis in nonimmune subjects. Antimicrob Agents Chemother. 2010;54:792–8.
Article
CAS
PubMed
Google Scholar
Schlagenhauf P, Hatz C, Behrens R, Visser L, Funk M, Holzer B, et al. Mefloquine at the crossroads? Implications for malaria chemoprophylaxis in Europe. Travel Med Infect Dis. 2015;13:192–6.
Article
PubMed
Google Scholar
Llanos-Cuentas A, Lacerda MV, Rueangweerayut R, Krudsood S, Gupta SK, Kochar SK, et al. Tafenoquine plus chloroquine for the treatment and relapse prevention of Plasmodium vivax malaria (DETECTIVE): a multicentre, double-blind, randomised, phase 2b dose-selection study. Lancet. 2014;383:1049–58.
Article
CAS
PubMed
Google Scholar
Lacerda M, Llanos-Cuentas A, Krudsood S, Lon C, Saunders D, Mohammed R, et al. Single-dose tafenoquine to prevent relapse of Plasmodium vivax malaria. N Engl J Med. 2019;380:215–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Llanos-Cuentas A, Lacerda M, Tinh Hien T, Vélez I, Namaik-larp C, Chu C, et al. Tafenoquine versus primaquine to prevent relapse of Plasmodium vivax malaria. N Engl J Med. 2019;380:229–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim JR, Nandy A, Maji AK, Addy M, Dondorp AM, Day NP, et al. Genotyping of Plasmodium vivax reveals both short and long latency relapse patterns in Kolkata. PLoS ONE. 2012;7:e39645.
Article
CAS
PubMed
PubMed Central
Google Scholar
Douglas NM, Poespoprodjo JR, Patriani D, Malloy MJ, Kenangalem E, Sugiarto P, et al. Unsupervised primaquine for the treatment of Plasmodium vivax malaria relapses in southern Papua: a hospital-based cohort study. PLoS Med. 2017;14:e1002379.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chui CS, Chan EW, Wong AY, Root A, Douglas IJ, Wong IC. Association between oral fluoroquinolones and seizures: a self-controlled case series study. Neurology. 2016;86:1708–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bauquier SH, Jiang JL, Lai A, Cook MJ. Clonic seizures in GAERS rats after oral administration of enrofloxacin. Comp Med. 2016;66:220–4.
CAS
PubMed
PubMed Central
Google Scholar
Sutter R, Ruegg S, Tschudin-Sutter S. Seizures as adverse events of antibiotic drugs: a systematic review. Neurology. 2015;85:1332–41.
Article
CAS
PubMed
Google Scholar
Dayan AD. Neurotoxicity and artemisinin compounds: do the observations in animals justify limitation of clinical use? Med Trop. 1998;58:32–7.
CAS
Google Scholar
Genovese RF, Newman DB. Understanding artemisinin-induced brainstem neurotoxicity. Arch Toxicol. 2008;82:379–85.
Article
CAS
PubMed
Google Scholar
Kamchonwongpaisan S, McKeever P, Hossler P, Ziffer H, Meshnick SR. Artemisinin neurotoxicity: neuropathology in rats and mechanistic studies in vitro. Am J Trop Med Hyg. 1997;56:7–12.
Article
CAS
PubMed
Google Scholar
Nontprasert A, Nosten-Bertrand M, Pukrittayakamee S, Vanijanonta S, Angus BJ, White NJ. Assessment of the neurotoxicity of parenteral artemisinin derivatives in mice. Am J Trop Med Hyg. 1998;59:519–22.
Article
CAS
PubMed
Google Scholar
Nontprasert A, Pukrittayakamee S, Nosten-Bertrand M, Vanijanonta S, White NJ. Studies of the neurotoxicity of oral artemisinin derivatives in mice. Am J Trop Med Hyg. 2000;62:409–12.
Article
CAS
PubMed
Google Scholar
Li Q, Hickman M. Toxicokinetic and toxicodynamic (TK/TD) evaluation to determine and predict the neurotoxicity of artemisinins. Toxicology. 2011;279:1–9.
Article
CAS
PubMed
Google Scholar
Li QG, Mog SR, Si YZ, Kyle DE, Gettayacamin M, Milhous WK. Neurotoxicity and efficacy of arteether related to its exposure times and exposure levels in rodents. Am J Trop Med Hyg. 2002;66:516–25.
Article
CAS
PubMed
Google Scholar
Efferth T, Kaina B. Toxicity of the antimalarial artemisinin and its dervatives. Crit Rev Toxicol. 2010;40:405–21.
Article
CAS
PubMed
Google Scholar
Gordi T, Lepist EI. Artemisinin derivatives: toxic for laboratory animals, safe for humans? Toxicol Lett. 2004;147:99–107.
Article
CAS
PubMed
Google Scholar
Tiono AB, Tinto H, Alao MJ, Meremikwu M, Tshefu A, Ogutu B, et al. Increased systemic exposures of artemether and dihydroartemisinin in infants under 5 kg with uncomplicated Plasmodium falciparum malaria treated with artemether-lumefantrine (Coartem(R)). Malar J. 2015;14:157.
Article
PubMed
PubMed Central
CAS
Google Scholar
Davis TM, Binh TQ, Ilett KF, Batty KT, Phuong HL, Chiswell GM, et al. Penetration of dihydroartemisinin into cerebrospinal fluid after administration of intravenous artesunate in severe falciparum malaria. Antimicrob Agents Chemother. 2003;47:368–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grabias B, Kumar S. Adverse neuropsychiatric effects of antimalarial drugs. Expert Opin Drug Saf. 2016;15:903–10.
Article
CAS
PubMed
Google Scholar
Centers for Disease Control and Prevention. Malaria: disease. CDC. 2018. https://www.cdc.gov/malaria/about/disease.html. Accessed 24 Feb 2020.
Bartoloni A, Zammarchi L. Clinical aspects of uncomplicated and severe malaria. Mediterr J Hematol Infect Dis. 2012;4:e2012026.
Article
PubMed
PubMed Central
Google Scholar
Ssenkusu JM, Hodges JS, Opoka RO, Idro R, Shapiro E, John CC, et al. Long-term behavioral problems in children with severe malaria. Pediatrics. 2016;138:e20161965.
Article
PubMed
PubMed Central
Google Scholar
Boivin MJ, Bangirana P, Byarugaba J, Opoka RO, Idro R, Jurek AM, et al. Cognitive impairment after cerebral malaria in children: a prospective study. Pediatrics. 2007;119:e360–6.
Article
PubMed
Google Scholar
John CC, Bangirana P, Byarugaba J, Opoka RO, Idro R, Jurek AM, et al. Cerebral malaria in children is associated with long-term cognitive impairment. Pediatrics. 2008;122:e92–9.
Article
PubMed
Google Scholar
Fernando SD, Rodrigo C, Rajapakse S. The ‘hidden’ burden of malaria: cognitive impairment following infection. Malar J. 2010;9:366.
Article
PubMed
PubMed Central
Google Scholar
Zimmerman GA, Castro-Faria-Neto H. Persistent cognitive impairment after cerebral malaria: models, mechanisms and adjunctive therapies. Expert Rev Anti Infect Ther. 2010;8:1209–12.
Article
PubMed
Google Scholar
Bangirana P, Menk J, John CC, Boivin MJ, Hodges JS. The association between cognition and academic performance in Ugandan children surviving malaria with neurological involvement. PLoS ONE. 2013;8:e55653.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bangirana P, Musisi S, Boivin MJ, Ehnvall A, John CC, Bergemann TL, et al. Malaria with neurological involvement in Ugandan children: effect on cognitive ability, academic achievement and behaviour. Malar J. 2011;10:334.
Article
PubMed
PubMed Central
Google Scholar
Holding PA, Stevenson J, Peshu N, Marsh K. Cognitive sequelae of severe malaria with impaired consciousness. Trans R Soc Trop Med Hyg. 1999;93:529–34.
Article
CAS
PubMed
Google Scholar
Idro R, Kakooza-Mwesige A, Asea B, Ssebyala K, Bangirana P, Opoka RO, et al. Cerebral malaria is associated with long-term mental health disorders: a cross sectional survey of a long-term cohort. Malar J. 2016;15:184.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jones R, Kunsman G, Levine B, Smith M, Stahl C. Mefloquine distribution in postmortem cases. Forensic Sci Int. 1994;68:29–32.
Article
CAS
PubMed
Google Scholar
Pham YT, Nosten F, Farinotti R, White NJ, Gimenez F. Cerebral uptake of mefloquine enantiomers in fatal cerebral malaria. Int J Clin Pharmacol Ther. 1999;37:58–61.
CAS
PubMed
Google Scholar
Dow G, Bauman R, Caridha D, Cabezas M, Du F, Gomez-Lobo R, et al. Mefloquine induces dose-related neurological effects in a rat model. Antimicrob Agents Chemother. 2006;50:1045–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dow GS, Hudson TH, Vahey M, Koenig ML. The acute neurotoxicity of mefloquine may be mediated through a disruption of calcium homeostasis and ER function in vitro. Malar J. 2003;2:14.
Article
PubMed
PubMed Central
Google Scholar
Toovey S, Bustamante LY, Uhlemann AC, East JM, Krishna S. Effect of artemisinins and amino alcohol partner antimalarials on mammalian sarcoendoplasmic reticulum calcium adenosine triphosphatase activity. Basic Clin Pharmacol Toxicol. 2008;103:209–13.
Article
CAS
PubMed
Google Scholar
Viel JF, Warembourg C, Le Maner-Idrissi G, Lacroix A, Limon G, Rouget F, et al. Pyrethroid insecticide exposure and cognitive developmental disabilities in children: the PELAGIE mother-child cohort. Environ Int. 2015;82:69–75.
Article
CAS
PubMed
Google Scholar
Wnuk A, Rzemieniec J, Litwa E, Lason W, Krzeptowski W, Wojtowicz AK, et al. The crucial involvement of retinoid X receptors in DDE neurotoxicity. Neurotox Res. 2016;29:155–72.
Article
CAS
PubMed
Google Scholar
Soderlund DM. Molecular mechanisms of pyrethroid insecticide neurotoxicity: recent advances. Arch Toxicol. 2012;86:165–81.
Article
CAS
PubMed
Google Scholar
Yatham S, Sivathasan S, Yoon R, da Silva TL, Ravindran AV. Depression, anxiety, and post-traumatic stress disorder among youth in low and middle income countries: a review of prevalence and treatment interventions. Asian J Psychiatr. 2017;38:78–91.
Article
PubMed
Google Scholar
Gomez-Restrepo C, Cruz-Ramirez V, Medina-Rico M, Rincon CJ. Mental health in displaced children by armed conflict—National Mental Health Survey Colombia 2015. Actas Esp Psiquiatr. 2018;46:51–7.
PubMed
Google Scholar
World Bank. Malaria. World Bank. 2015. http://www.worldbank.org/en/topic/health/brief/malaria. Accessed 24 Feb 2020.
Salgado-Delgado R, Tapia Osorio A, Saderi N, Escobar C. Disruption of circadian rhythms: a crucial factor in the etiology of depression. Depress Res Treat. 2011;2011:839743.
PubMed
PubMed Central
Google Scholar
Kim JN, Lee BM. Risk management of free radicals involved in air travel syndromes by antioxidants. J Toxicol Environ Health B Crit Rev. 2018;21:47–60.
Article
CAS
PubMed
Google Scholar
Rundle AG, Revenson TA, Friedman M. Business travel and behavioral and mental health. J Occup Environ Med. 2018;60:612–6.
Article
PubMed
Google Scholar
Novitt-Moreno A, Ransom J, Dow G, Smith B, Read LT, Toovey S. Tafenoquine for malaria prophylaxis in adults: an integrated safety analysis. Travel Med Infect Dis. 2017;17:19–27.
Article
PubMed
Google Scholar
Kessler RC, Merikangas KR. The National Comorbidity Survey Replication (NCS-R): background and aims. Int J Methods Psychiatr Res. 2004;13:60–8.
Article
PubMed
Google Scholar
Kessler RC, Heeringa SG, Stein MB, Colpe LJ, Fullerton CS, Hwang I, et al. Thirty-day prevalence of DSM-IV mental disorders among nondeployed soldiers in the US Army: results from the Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS). JAMA Psychiatry. 2014;71:504–13.
Article
PubMed
PubMed Central
Google Scholar
Schoenbaum M, Kessler RC, Gilman SE, Colpe LJ, Heeringa SG, Stein MB, et al. Predictors of suicide and accident death in the Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS): results from the Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS). JAMA Psychiatry. 2014;71:493–503.
Article
PubMed
PubMed Central
CAS
Google Scholar
McFarlane A, Hodson S, N VH, C D. Mental health in the Australian Defence Force: 2010 ADF mental health prevalence and wellbeing study report. Department of Defence. 2011. http://www.defence.gov.au/health/dmh/docs/mhpwsreport-fullreport.pdf. Accessed 24 Feb 2020.
Rusu C, Zamorski MA, Boulos D, Garber BG. Prevalence comparison of past-year mental disorders and suicidal behaviours in the Canadian Armed Forces and the Canadian general population. Can J Psychiatry. 2016;61:46S–55S.
Article
PubMed
PubMed Central
Google Scholar
Goodwin L, Wessely S, Hotopf M, Jones M, Greenberg N, Rona RJ, et al. Are common mental disorders more prevalent in the UK serving military compared to the general working population? Psychol Med. 2015;45:1881–91.
Article
CAS
PubMed
Google Scholar
Nock MK, Stein MB, Heeringa SG, Ursano RJ, Colpe LJ, Fullerton CS, et al. Prevalence and correlates of suicidal behavior among soldiers: results from the Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS). JAMA Psychiatry. 2014;71:514–22.
Article
PubMed
PubMed Central
Google Scholar
Friedman MJ. Suicide risk among soldiers: early findings from Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS). JAMA Psychiatry. 2014;71:487–9.
Article
PubMed
Google Scholar
Mulligan K, Jones N, Davies M, McAllister P, Fear NT, Wessely S, et al. Effects of home on the mental health of British forces serving in Iraq and Afghanistan. Br J Psychiatry. 2012;201:193–8.
Article
PubMed
Google Scholar
Trautmann S, Goodwin L, Hofler M, Jacobi F, Strehle J, Zimmermann P, et al. Prevalence and severity of mental disorders in military personnel: a standardised comparison with civilians. Epidemiol Psychiatr Sci. 2017;26:199–208.
Article
CAS
PubMed
Google Scholar
Ursano RJ, Stein MB, Herberman Mash HB, Naifeh JA, Fullerton CS, Zaslavsky AM, et al. Documented family violence and risk of suicide attempt among US Army soldiers. Psychiatry Res. 2018;262:575–82.
Article
PubMed
Google Scholar
Ministry of Defence. UK Armed Forces mental health: annual summary & trends over time, 2007/08–2016/17. MOD. 2017. www.gov.uk/government/statistics/mental-health-in-the-uk-armed-forces-background-quality-report. Accessed 24 Feb 2020.
Kim HM, Levine DS, Pfeiffer PN, Blow AJ, Marchiondo C, Walters H, et al. Postdeployment suicide risk increases over a 6-month period: predictors of increased risk among midwestern Army National Guard soldiers. Suicide Life Threat Behav. 2017;47:421–35.
Article
PubMed
Google Scholar
Lazar SG. The mental health needs of military service members and veterans. Psychodyn Psychiatry. 2014;42:459–78.
Article
PubMed
Google Scholar
Hines LA, Sundin J, Rona RJ, Wessely S, Fear NT. Posttraumatic stress disorder post Iraq and Afghanistan: prevalence among military subgroups. Can J Psychiatry. 2014;59:468–79.
Article
PubMed
PubMed Central
Google Scholar
Hoge CW, Castro CA, Messer SC, McGurk D, Cotting DI, Koffman RL. Combat duty in Iraq and Afghanistan, mental health problems and barriers to care. US Army Med Dep J. 2008;7–17.
Sareen J, Cox BJ, Afifi TO, Stein MB, Belik SL, Meadows G, et al. Combat and peacekeeping operations in relation to prevalence of mental disorders and perceived need for mental health care: findings from a large representative sample of military personnel. Arch Gen Psychiatry. 2007;64:843–52.
Article
PubMed
Google Scholar
Adshead S. The adverse effects of mefloquine in deployed military personnel. J R Nav Med Serv. 2014;100:232–7.
CAS
PubMed
Google Scholar
Schmidt LH. Relationships between chemical structures of 8-aminoquinolines and their capacities for radical cure of infections with Plasmodium cynomolgi in Rhesus monkeys. Antimicrob Agents Chemother. 1983;24:615–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
GlaxoSmithKline. Krintafel (tafenoquine succinate tablets): FDA Advisory Committee Briefing Document GSK. 2018. https://www.fda.gov/downloads/advisorycommittees/committeesmeetingmaterials/drugs/anti-infectivedrugsadvisorycommittee/ucm612875.pdf. Accessed 24 Feb 2020.
Dow GS, Brown T, Reid M, Smith B, Toovey S. Tafenoquine is not neurotoxic following supertherapeutic dosing in rats. Travel Med Infect Dis. 2017;17:28–34.
Article
PubMed
Google Scholar
Dow GS, Gettayacamin M, Hansukjariya P, Imerbsin R, Komcharoen S, Sattabongkot J, et al. Radical curative efficacy of tafenoquine combination regimens in Plasmodium cynomolgi-infected Rhesus monkeys (Macaca mulatta). Malar J. 2011;10:212.
Article
CAS
PubMed
PubMed Central
Google Scholar
Puri SK, Dutta GP. Blood schizontocidal activity of WR 238605 (tafenoquine) against Plasmodium cynomolgi and Plasmodium fragile infections in Rhesus monkeys. Acta Trop. 2003;86:35–40.
Article
CAS
PubMed
Google Scholar
DiTusa C, Kozar MP, Pybus B, Sousa J, Berman J, Gettayacamin M, et al. Causal prophylactic efficacy of primaquine, tafenoquine, and atovaquone-proguanil against Plasmodium cynomolgi in a rhesus monkey model. J Parasitol. 2014;100:671–3.
Article
PubMed
Google Scholar
Sixty Degrees Pharmaceuticals. ARAKODA™ (tafenoquine succinate) tablets for the prevention of malaria in adults: NDA 210607; briefing document for the Antimicrobial Drugs Advisory Committee. Sixty Degrees Pharmaceuticals. 2018. https://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/Anti-InfectiveDrugsAdvisoryCommittee/UCM614202.pdf. Accessed 24 Feb 2020.
Fukuda MM, Krudsood S, Mohamed K, Green JA, Warrasak S, Noedl H, et al. A randomized, double-blind, active-control trial to evaluate the efficacy and safety of a three day course of tafenoquine monotherapy for the treatment of Plasmodium vivax malaria. PLoS ONE. 2017;12:e0187376.
Article
PubMed
PubMed Central
CAS
Google Scholar
Walsh DS, Wilairatana P, Tang DB, Heppner DG Jr, Brewer TG, Krudsood S, et al. Randomized trial of 3-dose regimens of tafenoquine (WR238605) versus low-dose primaquine for preventing Plasmodium vivax malaria relapse. Clin Infect Dis. 2004;39:1095–103.
Article
CAS
PubMed
Google Scholar
Schmidt IG, Schmidt LH. Neurotoxicity of the 8-aminoquinolines. III. The effects of pentaquine, isopentaquine, primaquine, and pamaquine on the central nervous system of the Rhesus monkey. J Neuropathol Exp Neurol. 1951;10:231–56.
Article
CAS
PubMed
Google Scholar
Berman J, Brown T, Dow G, Toovey S. Tafenoquine and primaquine do not exhibit clinical neurologic signs associated with central nervous system lesions in the same manner as earlier 8-aminoquinolines. Malar J. 2018;17:407.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sixty Degrees Pharmaceuticals. ARAKODA™ (tafenoquine) tablets, for oral use; prescribing information. Sixty Degrees Pharmaceuticals. 2018. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210607lbl.pdf. Accessed 24 Feb 2020.
GlaxoSmithKline. KRINTAFEL (tafenoquine) tablets, for oral use; prescribing information. GlaxoSmithKline. 2018. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210795s000lbl.pdf. Accessed 24 Feb 2020.
Waller M, Treloar SA, Sim MR, McFarlane AC, McGuire AC, Bleier J, et al. Traumatic events, other operational stressors and physical and mental health reported by Australian Defence Force personnel following peacekeeping and war-like deployments. BMC Psychiatry. 2012;12:88.
Article
PubMed
PubMed Central
Google Scholar
Rueangweerayut R, Bancone G, Harrell EJ, Beelen AP, Kongpatanakul S, Mohrle JJ, et al. Hemolytic potential of tafenoquine in female volunteers heterozygous for glucose-6-phosphate dehydrogenase (G6PD) deficiency (G6PD Mahidol variant) versus G6PD-normal volunteers. Am J Trop Med Hyg. 2017;97:702–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galappaththy GN, Tharyan P, Kirubakaran R. Primaquine for preventing relapse in people with Plasmodium vivax malaria treated with chloroquine. Cochrane Database Syst Rev. 2013. https://doi.org/10.1002/14651858.CD004389.pub3.
Article
PubMed
PubMed Central
Google Scholar
Shanks GD, Oloo AJ, Aleman GM, Ohrt C, Klotz FW, Braitman D, et al. A new primaquine analogue, tafenoquine (WR 238605), for prophylaxis against Plasmodium falciparum malaria. Clin Infect Dis. 2001;33:1968–74.
Article
CAS
PubMed
Google Scholar
Brueckner RP, Lasseter KC, Lin ET, Schuster BG. First-time-in-humans safety and pharmacokinetics of WR 238605, a new antimalarial. Am J Trop Med Hyg. 1998;58:645–9.
Article
CAS
PubMed
Google Scholar
Green JA, Patel AK, Patel BR, Hussaini A, Harrell EJ, McDonald MJ, et al. Tafenoquine at therapeutic concentrations does not prolong Fridericia-corrected QT interval in healthy subjects. J Clin Pharmacol. 2014;54:995–1005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leary KJ, Riel MA, Roy MJ, Cantilena LR, Bi D, Brater DC, et al. A randomized, double-blind, safety and tolerability study to assess the ophthalmic and renal effects of tafenoquine 200 mg weekly versus placebo for 6 months in healthy volunteers. Am J Trop Med Hyg. 2009;81:356–62.
Article
CAS
PubMed
Google Scholar