WHO. World Malaria Report 2019. Geneva: World Health Organization; 2019.
Aultman KS, Gottlieb M, Giovanni MY, Fauci AS. Anopheles gambiae genome: completing the malaria triad. Science. 2002;298:13.
Article
CAS
PubMed
Google Scholar
Saeed IE, Ahmed ES. Determinants of acquiring malaria among displaced people in Khartoum state Sudan. East Mediterr Health J. 2003;9:581–92.
CAS
PubMed
Google Scholar
Asidi A, N’Guessan R, Akogbeto M, Curtis C, Rowland M. Loss of household protection from use of insecticide-treated nets against pyrethroid-resistant mosquitoes. Benin. Emerg Infect Dis. 2012;18:1101–6.
Article
PubMed
Google Scholar
Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol. 2011;27:91–8.
Article
CAS
PubMed
Google Scholar
Strode C, Donegan S, Garner P, Enayati AA, Hemingway J. The impact of pyrethroid resistance on the efficacy of insecticide-treated bed nets against african anopheline mosquitoes: systematic review and meta-analysis. PLoS Med. 2014;11:e1001619.
Article
PubMed
PubMed Central
Google Scholar
Partnership SCT. Efficacy and safety of RTS, S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet. 2015;386:31–45.
Article
CAS
Google Scholar
Argiles Herrero R, Gilles J, Lees RS. Mosquito handling, transport and release methods. Report of a Consultants Group Meeting held in Vienna; 2014.
Lees RS, Gilles JR, Hendrichs J, Vreysen MJ, Bourtzis K. Back to the future: the sterile insect technique against mosquito disease vectors. Curr Opin Insect Sci. 2015;10:156–62.
Article
PubMed
Google Scholar
Oliva CF, Maier MJ, Gilles J, Jacquet M, Lemperiere G, Quilici S, et al. Effects of irradiation, presence of females, and sugar supply on the longevity of sterile males Aedes albopictus (Skuse) under semi-field conditions on Reunion Island. Acta Trop. 2013;125:287–93.
Article
PubMed
Google Scholar
Tabachnick WJ. Reflections on the Anopheles gambiae genome sequence, transgenic mosquitoes and the prospect for controlling malaria and other vector borne diseases. J Med Entomol. 2003;40:597–606.
Article
CAS
PubMed
Google Scholar
Knipling EF. Possibilities of insect control or eradication through the use of sexually sterile males. J Econ Entomol. 1955;48:459–62.
Article
Google Scholar
Bargielowski I, Kaufmann C, Alphey L, Reiter P, Koella J. Flight performance and teneral energy reserves of two genetically-modified and one wild-type strain of the yellow fever mosquito Aedes aegypti. Vector-Borne Zoonotic Dis. 2012;12:1053–8.
Article
PubMed
PubMed Central
Google Scholar
Benedict MQ, Robinson AS. The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends Parasitol. 2003;19:349–55.
Article
PubMed
Google Scholar
Ferguson HM, John B, Ng K, Knols BGJ. Redressing the sex imbalance in knowledge of vector biology. Trends Ecol Evol. 2005;20:202–9.
Article
PubMed
Google Scholar
Takken W. Chemical ecology of insect vectors: temporal, environmental and physiological aspects. Trends Parasitol. 2005;21:57.
Article
PubMed
Google Scholar
Howell PI, Knols BG. Male mating biology. Malar J. 2009;8(Suppl 2):S8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Diabate A, Baldet T, Brengues C, Kengne P, Dabire KR, Simard F, et al. Natural swarming behaviour of the molecular M form of Anopheles gambiae. Trans R Soc Trop Med Hyg. 2003;97:713–6.
Article
CAS
PubMed
Google Scholar
Sawadogo PS, Namountougou M, Toé KH, Rouamba J, Maïga H, Ouédraogo KR, et al. Swarming behaviour in natural populations of Anopheles gambiae and An. coluzzii: Review of 4 years survey in rural areas of sympatry, Burkina Faso (West Africa). Acta Trop. 2014;130:24–34.
Article
Google Scholar
Charlwood JD, Jones MDR. Mating in the mosquito, Anopheles gambiae s.l. II. Swarming behaviour. Physiol Entomol. 1980;5:315–20.
Article
Google Scholar
Charlwood JD, Pinto J, Sousa CA, Madsen H, Ferreira C, Rosario VE. The swarming and mating behaviour of Anopheles gambiae s.s. (Diptera: Culicidae) from São Tomé Island. J Vector Ecol. 2002;27:178–83.
CAS
PubMed
Google Scholar
Sawadogo SP, Costantini C, Pennetier C, Diabaté A, Gibson G, Dabiré RK. Differences in timing of mating swarms in sympatric populations of Anopheles coluzzii and Anopheles gambiae s.s. (formerly An. gambiae M and S molecular forms) in Burkina Faso, West Africa. Parasit Vectors. 2013;6:275.
Article
PubMed
PubMed Central
Google Scholar
Maïga H, Dabiré RK, Lehmann T, Tripet F, Diabaté A. Variation in energy reserves and role of body size in the mating system of Anopheles gambiae. J Vector Ecol. 2012;37:289–97.
Article
PubMed
Google Scholar
Yahouédo GA, Djogbénou L, Saïzonou J, Assogba BS, Makoutodé M, Gilles JRL, et al. Effect of three larval diets on larval development and male sexual performance of Anopheles gambiae s.s. Acta Trop. 2014;132:S96–101.
Article
PubMed
CAS
Google Scholar
Gary RE Jr, Cannon JW, Foster WA. Effect of sugar on male Anopheles gambiae mating performance, as modified by temperature, space, and body size. Parasit Vectors. 2009;2:19.
Article
PubMed
PubMed Central
Google Scholar
Maïga H, Niang A, Sawadogo SP, Dabiré RK, Susan R, Gilles JRL, et al. Role of nutritional reserves and body size in Anopheles gambiae males mating success. Acta Trop. 2013;132:S102–7.
Article
PubMed
Google Scholar
Ekechukwu NE, Baeshen R, Traore SF, Coulibaly MB, Diabaté A, Catteruccia F, et al. Heterosis increases fertility, fecundity and survival of laboratory-produced F1 hybrid males of the malaria mosquito Anopheles coluzzii. G3 Genes Genomes Genetics. 2015;5:2693–709.
CAS
PubMed
PubMed Central
Google Scholar
Foster WA. Mosquito sugar feeding and reproductive energetics. Annu Rev Entomol. 1995;40:443–74.
Article
CAS
PubMed
Google Scholar
Vantaux A, de Sales Hien DF, Yameogo B, Dabiré KR, Thomas F, Cohuet A, et al. Host-seeking behaviors of mosquitoes experimentally infected with sympatric field isolates of the human malaria parasite Plasmodium falciparum: no evidence for host manipulation. Front Ecol Evol. 2015;3:86.
Article
Google Scholar
Roux O, Diabaté A, Simard F. Divergence in threat sensitivity among aquatic larvae of cryptic mosquito species. J Anim Ecol. 2014;83:702–11.
Article
PubMed
Google Scholar
Moorefield HH. Sexual dimorphism in mosquito pupae. Mosq News. 1951;11:175–7.
Google Scholar
Niang A, Nignan C, Poda BS, Sawadogo PS, Dabiré KR, Gnankiné O, et al. New semi-field and indoor setups to study malaria mosquito swarming behavior. Parasit Vectors. 2019;12:446.
Article
PubMed
PubMed Central
Google Scholar
Poda SB, Nignan C, Gnankiné O, Dabiré RK, Diabaté A, Roux O. Sex aggregation and species segregation cues in swarming mosquitoes: role of ground visual markers. Parasit Vectors. 2019;12:589.
Article
PubMed
PubMed Central
Google Scholar
Crawley MJ. The R book Second Edition. 2013.
Yuval B, Holliday-Hanson ML, Washing RK. Energy budget of swarming male mosquitoes. Ecol Entomol. 1994;19:74–8.
Article
Google Scholar
Kessler S, Vlimant M, Guerin PM. The sugar meal of the African malaria mosquito Anopheles gambiae and how deterrent compounds interfere with it: a behavioural and neurophysiological study. J Exp Biol. 2012;216:1292–306.
Article
PubMed
CAS
Google Scholar
Hien DFS, Dabiré KR, Roche B, Diabaté A, Yerbanga RS, Cohuet A, et al. Plant-mediated effects on mosquito capacity to transmit human malaria. PLoS Pathog. 2016;12:e1005773.
Article
PubMed
PubMed Central
CAS
Google Scholar
Otronen M. Energy reserves and mating success in males of the yellow dung fly Scathophaga stercoraria. Funct Ecol. 1995;9:683–8.
Article
Google Scholar
Diabaté A, Yaro AS, Dao A, Diallo M, Huestis DL, Lehmann T. Spatial distribution and male mating success of Anopheles gambiae swarms. BMC Evol Biol. 2011;11:184.
Article
PubMed
PubMed Central
Google Scholar
Müller G, Schlein Y. Sugar questing mosquitoes in arid areas gather on scarce blossoms that can be used for control. Int J Parasitol. 2006;36:1077–80.
Article
PubMed
Google Scholar
Gouagna LC, Poueme RS, Dabiré KR, Ouédraogo JB, Fontenille D, Simard F. Patterns of sugar feeding and host plant preferences in adult males of An. gambiae (Diptera: Culicidae). J Vector Ecol. 2010;35:267–76.
Article
PubMed
Google Scholar
Gary RE, Foster WA. Anopheles gambiae feeding and survival on honeydew and extra-floral nectar of peridomestic plants. Med Vet Entomol. 2004;18:102–7.
Article
PubMed
Google Scholar
Somda NSB, Poda BS, Sawadogo PS, Gnankine O, Maiga H, Fournet F, et al. Ecology of reproduction of Anopheles arabiensis in an urban area of bobo-dioulasso, Burkina Faso (West Africa): monthly swarming and mating frequency and their relation to environmental factors. PLoS ONE. 2018;13:e0205966.
Article
CAS
Google Scholar
Dabire KR, Sawadodgo S, Diabate A, Toe KH, Kengne P, Ouari A, et al. Assortative mating in mixed swarms of the mosquito Anopheles gambiae s.s. M and S molecular forms, in Burkina Faso, West Africa. Med Vet Entomol. 2013;27:298–312.
Article
CAS
PubMed
Google Scholar
Briegel H, Knüsel I, Timmermann SE. Aedes aegypti: size, reserves, survival, and flight potential. J Vector Ecol. 2001;26:21–31.
CAS
PubMed
Google Scholar
Malmgren L. Sugar host preferences in adult Anopheles —dry season plant selection in Burkina Faso. MSc Ecology, Uppsala. 2015;3.