Ceesay SJ, Casals-Pascual C, Erskine J, Anya SE, Duah NO, Fulford AJC, et al. Changes in malaria indices between 1999 and 2007 in The Gambia: a retrospective analysis. Lancet. 2008;372:1545–54.
PubMed
PubMed Central
Google Scholar
O’Meara WP, Mangeni JN, Steketee R, Greenwood B. Changes in the burden of malaria in sub-Saharan Africa. Lancet. 2010;10:545–55.
PubMed
Google Scholar
Steketee RW, Campbell CC. Impact of national malaria control scale-up programmes in Africa: magnitude and attribution of effects. Malar J. 2010;9:299.
PubMed
PubMed Central
Google Scholar
Pigott DM, Atun R, Moyes CL, Simon IH, Peter WG. Funding for malaria control 2006–2010: a comprehensive global assessment. Malar J. 2012;11:246.
PubMed
PubMed Central
Google Scholar
Murray CJL, Rosenfeld LC, Lim SS, Andrews KG, Foreman KJ, Haring D, et al. Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet. 2012;379:413–31.
PubMed
Google Scholar
Okiro EA, Hay SI, Gikandi PW, Sharif SK, Noor AM, Peshu N, et al. The decline in paediatric malaria admissions on the coast of Kenya. Malar J. 2007;6:151.
PubMed
PubMed Central
Google Scholar
Otten M, Aregawi M, Were W, Karema C, Medin A, Bekele W, et al. Evidence of reduction of malaria cases and deaths in Rwanda and Ethiopia due to rapid scale-up of malaria prevention and treatment. Malar J. 2009;8:14.
PubMed
PubMed Central
Google Scholar
Eckert E, Florey LS, Tongren JE, Salgado SR, Rukundo A, Habimana JP, et al. Impact evaluation of malaria control interventions on morbidity and all-cause child mortality in Rwanda, 2000–2010. Am J Trop Med Hyg. 2017;97(3 Suppl):99–110.
PubMed
PubMed Central
Google Scholar
Russell TL, Govella NJ, Azizi S, Drakeley CJ, Kachur SP, Killeen GF. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malaria J. 2012;10:80.
Google Scholar
Corbel V, N’Guessan R. Distribution, mechanisms, impact and management of insecticide resistance in malaria vectors: a pragmatic review. In: Manguin S, editor. Anopheles mosquitoes: new insights into malaria vectors. London: IntechOpen Publ; 2013.
Google Scholar
WHO. Action Plan for the reduction of reliance on DDT in disease vector control. 2001. http://whqlibdoc.who.int/hq/2001/WHO_SDE_WSH_01.5.pdf. Accessed 5 Aug 2015.
Nauen R. Insecticide resistance in disease vectors of public health importance. Pest Manag Sci. 2007;63:628–33.
CAS
PubMed
Google Scholar
Najera JA, Gonzalez-Silva M, Alonzo PL. Some lessons for the future from the global malaria eradication programme (1955–1969). PLoS Med. 2011;8:e1000412.
PubMed
PubMed Central
Google Scholar
Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol. 2011;27:91–8.
CAS
PubMed
Google Scholar
Wondji CS, Coleman M, Kleinschmidt I, Mzilahowa T, Irving H, Ndula M, et al. Impact of pyrethroid resistance on operational malaria control in Malawi. Proc Natl Acad Sci USA. 2012;109:19063–70.
CAS
PubMed
Google Scholar
Kabula B, Tungu P, Malima R, Rowland M, Minja J, Wililo R, et al. Distribution and spread of pyrethroid and DDT resistance among the Anopheles gambiae complex in Tanzania. Med Vet Entomol. 2014;28:244–52.
CAS
PubMed
Google Scholar
WHO. Global strategic framework for integrated vector management. http://www.who.int/malaria/publications/atoz/who_cds_cpe_pvc_2004_10/en/. Accessed 5 Aug 2014.
Takken W, Knols BGJ. Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu Rev Entomol. 1999;44:131–57.
CAS
PubMed
Google Scholar
Foster WA. Mosquito sugar feeding and reproductive energetics. Annu Rev Entomol. 1995;40:443–74.
CAS
PubMed
Google Scholar
Bentley MD, Day JF. Chemical ecology and behavioral aspects of mosquito oviposition. Annu Rev Entomol. 1989;34:401–21.
CAS
PubMed
Google Scholar
Zwiebel LJ, Takken W. Olfactory regulation of mosquito-host interactions. Insect Biochem Mol Biol. 2004;34:645–52.
CAS
PubMed
PubMed Central
Google Scholar
Bowen MF. The sensory physiology of host-seeking behavior in mosquitoes. Annu Rev Entomol. 1991;36:139–58.
CAS
PubMed
Google Scholar
Mafra-Neto A, Saroli J, Da Silva RO, Mboera LEG, White GB, Woodbridge F, et al. Getting them where they live—semiochemical-based strategies to address major gaps in vector control programs: Vectrax, SPLAT BAC, Trojan Cow, and SPLAT TK. Adv Biorational Control Med V Pests. 2018;7:101–52.
Google Scholar
Mafra-Neto A, Dekker T. Novel odor-based strategies for integrated management of vectors of disease. Curr Opin Insect Sci. 2019;34:105–11.
PubMed
PubMed Central
Google Scholar
Lewis WJ, Martin WR. Semiochemicals for use with parasitoids: status and future. J Chem Ecol. 1990;16:3067–89.
CAS
PubMed
Google Scholar
Moraes MCB, Pareja M, Laumann RA, Borges MS. The chemical volatiles (semiochemicals) produced by neotropical stink bugs (Hemiptera: Pentatomidae). Neotrop Entomol. 2008;37:489–505.
CAS
PubMed
Google Scholar
Okumu FO, Killeen GF, Ogoma S, Biswaro L, Smallegange RC, Mbeyela E, et al. Development and field evaluation of a synthetic mosquito lure that is more attractive than humans. PLoS ONE. 2010;5:e8951.
PubMed
PubMed Central
Google Scholar
Allan SA, Bernier UR, Kline DL. Laboratory evaluation of avian odors for mosquito (Diptera: Culicidae) attraction. J Med Entomol. 2006;43:226–31.
Google Scholar
Dekker T, Steib B, Cardé RT, Geier M. L-lactic acid: a human-signifying host cue for the anthropophilic mosquito Anopheles gambiae. Med Vet Entomol. 2002;16:91–8.
CAS
PubMed
Google Scholar
Njiru BN, Mukabana WR, Takken W, Knols BG. Trapping of the malaria vector Anopheles gambiae with odour-baited MM-X traps in semi-field conditions in western Kenya. Malar J. 2006;5:39.
PubMed
PubMed Central
Google Scholar
Nyasembe VO, Tchouassi DP, Mbogo CM. Linalool oxide: generalist plant-based lure for mosquito disease vectors. Parasit Vectors. 2015;8:581.
PubMed
PubMed Central
Google Scholar
Menger DJ, Van Loon JJ, Takken W. Assessing the efficacy of candidate mosquito repellents against the background of an attractive source that mimics a human host. Med Vet Entomol. 2014;28:407–13.
CAS
PubMed
Google Scholar
Whitney AQ, Günter CM, Edita ER, Sandra AA, Kristopher LA, John CB, et al. Evaluation of attractive toxic sugar bait (ATSB)—barrier for control of vector and nuisance mosquitoes and its effect on non-target organisms in sub-tropical environments in Florida. Acta Trop. 2014;131:104–10.
Google Scholar
Van Loon JJ, Smallegange RC, Bukovinszkiné-Kiss G, Jacobs F, De Rijk M, Mukabana WR, et al. Mosquito attraction: crucial role of carbon dioxide in formulation of a five-component blend of human-derived volatiles. J Chem Ecol. 2015;41:567–73.
PubMed
PubMed Central
Google Scholar
Nyasembe VO, Torto B. Volatile phytochemicals as mosquito semiochemicals. Phytochem Lett. 2014;8:196–201.
CAS
PubMed
PubMed Central
Google Scholar
Scott-Fiorenzano JM, Fulcher AP, Seeger KE. Evaluations of dual attractant toxic sugar baits for surveillance and control of Aedes aegypti and Aedes albopictus in Florida. Parasit Vectors. 2017;10:9.
PubMed
PubMed Central
Google Scholar
Jacob WJ, Tchouassi DP, Lagat ZO, Mathenge EM, Mweresad CK, Torto B. Independent and interactive effect of plant- and mammalian- based odors on the response of the malaria vector, Anopheles gambiae. Acta Trop. 2018;185:98–106.
CAS
PubMed
Google Scholar
Omondia WP, Owino EA, Odongo D, Mwangangi JM, Torto B, Tchouassi DP. Differential response to plant- and human-derived odorants in field surveillance of the dengue vector, Aedes aegypti. Acta Trop. 2019;200:105163.
Google Scholar
Peach DAH, Gries R, Zhai H. Multimodal floral cues guide mosquitoes to tansy inflorescences. Sci Rep. 2019;9:3908.
PubMed
PubMed Central
Google Scholar
Knols BG, Njiru BN, Mathenge EM. Malaria Sphere: a greenhouse-enclosed simulation of a natural Anopheles gambiae (Diptera: Culicidae) ecosystem in western Kenya. Malar J. 2002;1:19.
PubMed
PubMed Central
Google Scholar
Schorkopf DP, Christos GS, Mboera LEG, Mafra-Neto A, Ignell R, Dekker T. Combining attractants and larvicides in biodegradable matrices for sustainable mosquito vector control. PLoS Negl Trop Dis. 2016;10:e0005043.
PubMed
PubMed Central
Google Scholar
Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biom J. 2008;50:346–63.
PubMed
Google Scholar
Wickham H. Ggplot2: elegant graphics for data analysis. 2nd ed. Cham: Springer; 2016.
Google Scholar
Sparks JT, Botsko G, Swale DR, Boland LM, Patel SS, Dickens C. Membrane proteins mediating reception and transduction in chemosensory neurons in mosquitoes. Front Physiol. 2018;9:1309.
PubMed
PubMed Central
Google Scholar
Sijua KP, Bill SH, Rickard I. Immunocytochemical localization of serotonin in the central and peripheral chemosensory system of mosquitoes. Arthrop Struct Dev. 2008;37:248–59.
Google Scholar
Kline DL, Takken W, Wood JR, Carlson DA. Field studies on the potential of butanone, carbon dioxide, honey extract, 1-octen-3-ol, l-lactic acid and phenols as attractants for mosquitoes. Med Vet Entomol. 1990;4:383–91.
CAS
PubMed
Google Scholar
Kline DL, Bernier UR, Hogsette JA. Efficacy of three attractant blends tested in combination with carbon dioxide against natural populations of mosquitoes and biting flies at the lower Suwannee Wildlife Refuge. J Am Mosq Control Assoc. 2012;28:123–7.
CAS
PubMed
Google Scholar
Bernier UR, Kline DL, Posey KH, Booth MM, Yost RA, Barnard DR. Synergistic attraction of Aedes aegypti (L.) to binary blends of L-lactic acid and acetone, dichloromethane, or dimethyl disulfide. J Med Entomol. 2003;40:653–6.
CAS
PubMed
Google Scholar
Williams CR, Bergbauer R, Geier M, Kline DL, Bernier UR, Russell RC, Ritchie SA. Laboratory and field assessment of some kairomones blends for host seeking Aedes aegypti. J Am Mosq Control Assoc. 2006;22:641–7.
PubMed
Google Scholar
Hoel DF, Kline DL, Allan SA, Grant A. Evaluation of carbon dioxide, 1-octen- 3-ol, and lactic acid as baits in mosquito magnet™ pro traps for Aedes albopictus in North Central Florida. J Am Mosq Control Assoc. 2007;23:11–7.
CAS
PubMed
Google Scholar
Müller GC, Xue RD, Schlein Y. Differential attraction of Aedes albopictus in the field to flowers, fruits, and honeydew. Acta Trop. 2011;118:45–9.
PubMed
Google Scholar
El Hadi MAM, Zhang FJ, Wu FF, Zhou CH, Tao J. Advances in fruit aroma volatile research. Molecules. 2013;18:8200–29.
PubMed
PubMed Central
Google Scholar
Nyasembe VO, Tchouassi DP, Kirwa HK, Foster WA, Teal PEA, Borgemeister C, et al. Development and assessment of plant-based synthetic odor baits for surveillance and control of malaria vectors. PLoS ONE. 2014;9:e89818.
PubMed
PubMed Central
Google Scholar
Baker T, Fadamiro H, Cosse A. Moth uses fine tuning for odour resolution. Nature. 1998;393:530.
CAS
Google Scholar
Vickers NJ, Christensen TA, Baker TC, Hildebrand JG. Odour-plume dynamics influence the brain’s olfactory code. Nature. 2001;410:466–70.
CAS
PubMed
Google Scholar
Foster WA, Takken W. Nectar-related vs. human-related volatiles: behavioural response and choice by female and male Anopheles gambiae (Diptera: Culicidae) between emergence and first feeding. Bull Entomol Res. 2004;94:145–57.
CAS
PubMed
Google Scholar
Missbach C, Dwek HKMD, Vegol H, Vilcinskas A, Stensmyr MC, Hansson BS, et al. Evolution of insect olfactory receptors. eLife. 2014;3:e02115.
PubMed
PubMed Central
Google Scholar
Benton R. On the Origin of smell: odorant receptors in insects. Cell Mol Life Sci. 2006;63:1579–85.
CAS
PubMed
Google Scholar
Lebreton S, Becher PG, Hansson BS, Witzgall P. Attraction of Drosophila melanogaster males to food-related and fly odours. J Insect Physiol. 2012;58:125–9.
CAS
PubMed
Google Scholar
Vantaux A, Lefèvre T, Dabiré KR, Cohuet A. Individual experience affects host choice in malaria vector mosquitoes. Parasit Vectors. 2014;7:249.
PubMed
PubMed Central
Google Scholar
Wolff GH, Riffell JA. Olfaction, experience and neural mechanisms underlying mosquito host preference. J Exp Biol. 2018;221:157131.
Google Scholar
Klowden MJ, Crim JW, Young L, Shrouder LA, Lea AO. Endogenous regulation of mosquito host-seeking behaviour by a neuropeptide. J Insect Physiol. 1994;40:399–406.
Google Scholar
Klowden MJ. Endogenous regulation of the attraction of Aedes aegypti mosquitoes. J Am Mosq Control Assoc. 1994;10:326–32.
CAS
PubMed
Google Scholar
Taparia T, Ignell R, Hill SR. Blood meal induced regulation of the chemosensory gene repertoire in the southern house mosquito. BMC Genomics. 2017;18:393.
PubMed
PubMed Central
Google Scholar
Qualls WA, Müller GC, Traore SF. Indoor use of attractive toxic sugar bait (ATSB) to effectively control malaria vectors in Mali, West Africa. Malar J. 2015;14:301.
PubMed
PubMed Central
Google Scholar
Impoinvil DE, Kongere JO, Foster WA, Njiru BN, Killeen GF, Githure JI, et al. Feeding and survival of the malaria vector Anopheles gambiae on plants growing in Kenya. Med Vet Entomol. 2004;18:108–15.
CAS
PubMed
Google Scholar
Briegel H. Fecundity, metabolism, and body size in Anopheles (Diptera: Culicidae), vectors of malaria. J Med Entomol. 1990;27:839–50.
CAS
PubMed
Google Scholar
Fernandes L, Briegel H. Reproductive physiology of Anopheles gambiae and Anopheles atroparvus. J Vector Ecol. 2005;30:11–26.
PubMed
Google Scholar