Greenwood BM. The microepidemiology of malaria and its importance to malaria control. Trans R Soc Trop Med Hyg. 1989;83(Suppl 1):25–9.
Article
PubMed
Google Scholar
Hagenlocher M, Castro MC. Mapping malaria risk and vulnerability in the United Republic of Tanzania: a spatial explicit model. Popul Health Metr. 2015;13:2.
Article
PubMed
PubMed Central
Google Scholar
Homan T, Maire N, Hiscox A, Di Pasquale A, Kiche I, Onoka K, et al. Spatially variable risk factors for malaria in a geographically heterogeneous landscape, western Kenya: an explorative study. Malar J. 2016;15:1.
Article
PubMed
PubMed Central
Google Scholar
Sadoine ML, Smargiassi A, Ridde V, Tusting LS, Zinszer K. The associations between malaria, interventions, and the environment: a systematic review and meta-analysis. Malar J. 2018;17:73.
Article
PubMed
PubMed Central
Google Scholar
Carter R, Mendis KN, Roberts D. Spatial targeting of interventions against malaria. Bull World Health Organ. 2000;78:1401–11.
CAS
PubMed
PubMed Central
Google Scholar
Thomas CJ, Lindsay SW. Local-scale variation in malaria infection amongst rural gambian children estimated by satellite remote sensing. Trans R Soc Trop Med Hyg. 2000;94:159–63.
Article
CAS
PubMed
Google Scholar
Smith DL, Dushoff J, McKenzie FE. The risk of a mosquito-borne infection in a heterogeneous environment. PLoS Biol. 2004;2:e368.
Article
PubMed
PubMed Central
Google Scholar
Takken W, Verhulst NO. Host preferences of blood-feeding Mosquitoes. Annu Rev Entomol. 2013;58:433–53.
Article
CAS
PubMed
Google Scholar
Burkot TR. Non-random host selection by anopheline mosquitoes. Parasitol Today. 1988;4:156–62.
Article
CAS
PubMed
Google Scholar
Guelbéogo WM, Gonçalves BP, Grignard L, Bradley J, Serme SS, Hellewell J, et al. Variation in natural exposure to Anopheles mosquitoes and its effects on malaria transmission. Elife. 2018;7:e32625.
Article
PubMed
PubMed Central
Google Scholar
Kaindoa EW, Mkandawile G, Ligamba G, Kelly-Hope LA, Okumu FO. Correlations between household occupancy and malaria vector biting risk in rural Tanzanian villages: implications for high-resolution spatial targeting of control interventions. Malar J. 2016;15:199.
Article
PubMed
PubMed Central
Google Scholar
Takken W, Charlwood JD, Billingsley PF, Gort G. Dispersal and survival of Anopheles funestus and A. gambiae s.l (Diptera: Culicidae) during the rainy season in southeast Tanzania. Bull Entomol Res. 1998;88:561–6.
Article
Google Scholar
Woolhouse MEJ, Dye C, Etard JF, Smith T, Charlwood JD, Garnett GP, et al. Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proc Natl Acad Sci USA. 1997;94:338–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stresman G, Bousema T, Cook J. Malaria hotspots: is there epidemiological evidence for fine-scale spatial targeting of interventions? Trends Parasitol. 2019;35:822–34.
Article
PubMed
Google Scholar
Midega JT, Mbogo CM, Mwambi H, Wilson MD, Ojwang G, Mwangangi JM, et al. Estimating dispersal and survival of Anopheles gambiae and Anopheles funestus along the kenyan coast by using Mark–Release–Recapture methods. J Med Entomol. 2007;44:923–9.
Article
PubMed
Google Scholar
Dawes EJ, Churcher TS, Zhuang S, Sinden RE, Basáñez M-G. Anopheles mortality is both age- and plasmodium-density dependent: implications for malaria transmission. Malar J. 2009;8:228.
Article
PubMed
PubMed Central
Google Scholar
Ohm JR, Baldini F, Barreaux P, Lefevre T, Lynch PA, Suh E, et al. Rethinking the extrinsic incubation period of malaria parasites. Parasit Vectors. 2018;11:178.
Article
PubMed
PubMed Central
Google Scholar
Rajatileka S, Burhani J, Ranson H. Mosquito age and susceptibility to insecticides. Trans R Soc Trop Med Hyg. 2011;105:247–53.
Article
CAS
PubMed
Google Scholar
Lines JD, Nassor NS. DDT resistance in Anopheles gambiae declines with mosquito age. Med Vet Entomol. 1991;5:261–5.
Article
CAS
PubMed
Google Scholar
Chouaibou MS, Chabi J, Bingham GV, Knox TB, N’Dri L, Kesse NB, et al. Increase in susceptibility to insecticides with aging of wild Anopheles gambiae mosquitoes from Côte d’Ivoire. BMC Infect Dis. 2012;12:214.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matowo NS, Munhenga G, Tanner M, Coetzee M, Feringa WF, Ngowo HS, et al. Fine-scale spatial and temporal heterogeneities in insecticide resistance profiles of the malaria vector, Anopheles arabiensis in rural south-eastern Tanzania. Wellcome Open Res. 2017;2:96.
Article
PubMed
PubMed Central
Google Scholar
Pinda PG, Eichenberger C, Ngowo HS, Msaky DS, Abbasi S, Kihonda J, et al. Comparative assessment of insecticide resistance phenotypes in two major malaria vectors, Anopheles funestus and Anopheles arabiensis in south-eastern Tanzania. Malar J. 2020;19:408.
Article
CAS
PubMed
PubMed Central
Google Scholar
Finda MF, Limwagu AJ, Ngowo HS, Matowo NS, Swai JK, Kaindoa E, et al. Dramatic decreases of malaria transmission intensities in Ifakara, south-eastern Tanzania since early 2000s. Malar J. 2018;17:362.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swai JK, Mmbando AS, Ngowo HS, Odufuwa OG, Finda MF, Mponzi W, et al. Protecting migratory farmers in rural Tanzania using eave ribbons treated with the spatial mosquito repellent, transfluthrin. Malar J. 2019;18:414.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaindoa EW, Matowo NS, Ngowo HS, Mkandawile G, Mmbando A, Finda M, et al. Interventions that effectively target Anopheles funestus mosquitoes could significantly improve control of persistent malaria transmission in south – eastern Tanzania. PLoS ONE. 2017;12:e0177807.
Article
PubMed
PubMed Central
Google Scholar
Mapua SA, Hape EE, Kihonda J, Bwanary H, Kifungo K, Kilalangongono M, et al. Persistently high proportions of Plasmodium-infected Anopheles funestus mosquitoes in two villages in the Kilombero valley, South-Eastern Tanzania. Parasite Epidemiol Control. 2022;18:e00264.
Article
PubMed
PubMed Central
Google Scholar
Okumu F, Finda M. Key characteristics of residual malaria transmission in two districts in South-Eastern Tanzania—Implications for Improved Control. J Infect Dis. 2021;223:143–54.
Article
Google Scholar
Spark W. Average Weather in Ifakara, Tanzania, Year Round - Weather Spark. https://weatherspark.com/y/99526/Average-Weather-in-Ifakara-Tanzania-Year-Round.
Nambunga IH, Ngowo HS, Mapua SA, Hape EE, Msugupakulya BJ, Msaky DS, et al. Aquatic habitats of the malaria vector Anopheles funestus in rural south-eastern Tanzania. Malar J. 2020;19:219.
Article
CAS
PubMed
PubMed Central
Google Scholar
Limwagu AJ, Kaindoa EW, Ngowo HS, Hape E, Finda M, Mkandawile G, et al. Using a miniaturized double-net trap (DN-Mini) to assess relationships between indoor–outdoor biting preferences and physiological ages of two malaria vectors, Anopheles arabiensis and Anopheles funestus. Malar J. 2019;18:282.
Article
PubMed
PubMed Central
Google Scholar
Coetzee M. Key to the females of Afrotropical Anopheles mosquitoes (Diptera: Culicidae). Malar J. 2020;19:70.
Article
PubMed
PubMed Central
Google Scholar
WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes 2nd Edn. Geneva, World Health Organization; 2018.
Detinova T, Sergeevna DS, Bertram, WHO. Age-grouping methods in Diptera of medical importance, with special reference to some vectors of malaria. Geneva: World Health Organization; 1962.
Book
Google Scholar
Silver JB. Methods of age-grading adults and estimation of adult Survival Rates. In: Mosquito ecology field sampling methods. New York, Springer; 2008. pp. 1161–271.
Polovodova V. [The determination of the physiological age of female Anopheles by the number of gonotrophic cycles completed] (in rusian). Med Parasitol. 1949;28:352–5.
Google Scholar
Koekemoer LL, Kamau L, Hunt RH, Coetzee M. A cocktail polymerase chain reaction assay to identify members of the Anopheles funestus (Diptera: Culicidae) group. Am J Trop Med Hyg. 2002;66:804–11.
Article
CAS
PubMed
Google Scholar
R Core Team. A language and environment for statistical computing. R Found. Stat. Comput. Vienna, Austria. http//www.R-project.org/. 2019.
Cotter C, Sturrock HJW, Hsiang MS, Liu J, Phillips AA, Hwang J, et al. The changing epidemiology of malaria elimination: new strategies for new challenges. Lancet. 2013;382:900–11.
Article
PubMed
Google Scholar
Charlwood JD, Tomás EVE, Andegiorgish AK, Mihreteab S, LeClair C. “We like it wet”: a comparison between dissection techniques for the assessment of parity in Anopheles arabiensis and determination of sac stage in mosquitoes alive or dead on collection. PeerJ. 2018;2018:e5155.
Article
Google Scholar
Drakeley C, Schellenberg D, Kihonda J, Sousa CA, Arez AP, Lopes D, et al. An estimation of the entomological inoculation rate for Ifakara: a semi-urban area in a region of intense malaria transmission in Tanzania. Trop Med Int Heal. 2003;8:767–74.
Article
CAS
Google Scholar
Mboera LE. Sampling techniques for adult afrotropical malaria vectors and their reliability in the estimation of entomological inoculation rate. Tanzan Health Res Bull. 2005;7:117–24.
CAS
PubMed
Google Scholar
Collins E, Vaselli NM, Sylla M, Beavogui AH, Orsborne J, Lawrence G, et al. The relationship between insecticide resistance, mosquito age and malaria prevalence in Anopheles gambiae s.l from Guinea. Sci Rep. 2019;9:8846.
Article
PubMed
PubMed Central
Google Scholar
Christian R, Matambo T, Spillings B, Brooke B, Coetzee M, Koekemoer L, et al. Age-related pyrethroid resistance is not a function of P450 gene expression in the major african malaria vector, Anopheles funestus (Diptera: Culicidae). Genet Mol Res. 2011;10:3220–9.
Article
CAS
PubMed
Google Scholar
Mbepera S, Nkwengulila G, Peter R, Mausa EA, Mahande AM, Coetzee M, et al. The influence of age on insecticide susceptibility of Anopheles arabiensis during dry and rainy seasons in rice irrigation schemes of Northern Tanzania. Malar J. 2017;16:364.
Article
PubMed
PubMed Central
Google Scholar
Kulma K, Saddler A, Koella JC. Effects of Age and Larval Nutrition on phenotypic expression of insecticide-resistance in Anopheles mosquitoes. PLoS ONE. 2013;8:e58322.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rowland M, Hemingway J. Changes in malathion resistance with age in Anopheles stephensi from Pakistan. Pestic Biochem Physiol. 1987;28:239–47.
Article
CAS
Google Scholar
Hunt RH, Brooke BD, Pillay C, Koekemoer LL, Coetzee M. Laboratory selection for and characteristics of pyrethroid resistance in the malaria vector Anopheles funestus. Med Vet Entomol. 2005;19:271–5.
Article
CAS
PubMed
Google Scholar
Hazelton GA, Lang CA. Glutathione S-transferase activities in the yellow-fever mosquito aedes aegypti (Louisville) during growth and aging. Biochem J. 1983;210:281–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oliver SV, Brooke BD. The effect of multiple blood-feeding on the longevity and insecticide resistant phenotype in the major malaria vector Anopheles arabiensis (Diptera: Culicidae). Parasit Vectors. 2014;7:390.
Article
PubMed
PubMed Central
Google Scholar