WHO. Vector-borne diseases. Geneva: World Health Organization; 2017.
Google Scholar
WHO Malaria Policy Advisory Committee and Secretariat. Malaria Policy Advisory Committee to the WHO: conclusions and recommendations of eighth biannual meeting (September 2015). Malar J. 2016;15:117.
Article
Google Scholar
Fornace KM, Diaz AV, Lines J, Drakeley CJ. Achieving global malaria eradication in changing landscapes. Malar J. 2021;20:1–14.
Article
Google Scholar
Knapp J, Macdonald M, Malone D, Hamon N, Richardson JH. Disruptive technology for vector control: the innovative Vector Control Consortium and the US Military join forces to explore transformative insecticide application technology for mosquito control programmes. Malar J. 2015;14:371.
Article
Google Scholar
Ahirwar S, Swarnkar R, Bhukya S, Namwade G. Application of drone in agriculture. Int J Curr Microbiol Appl Sci. 2019;8:2500–5.
Article
Google Scholar
Roslim MHM, Juraimi AS, Che’Ya NN, Sulaiman N, Manaf MNHA, Ramli Z, et al. Using remote sensing and an unmanned aerial system for weed management in agricultural crops: a review. Agronomy. 2021;11:1809.
Article
CAS
Google Scholar
Khan S, Tufail M, Khan MT, Khan ZA, Iqbal J, Alam M. A novel semi-supervised framework for UAV based crop/weed classification. PLoS ONE. 2021;16:e0251008.
Article
CAS
Google Scholar
Honkavaara E, Näsi R, Oliveira R, Viljanen N, Suomalainen J, Khoramshahi E, et al. Using multitemporal hyper- and multispectral UAV imaging for detecting bark beetle infestation on Norway spruce. Int Arch Photogrammetry Remote Sens Spatial Inform Sci. 2020;43:B3.
Google Scholar
Vanegas F, Bratanov D, Powell K, Weiss J, Gonzalez F. A novel methodology for improving plant pest surveillance in vineyards and crops using UAV-based hyperspectral and spatial data. Sensors. 2018;18:260.
Article
Google Scholar
Yu Q, Liu H, Xiao N. Unmanned aerial vehicles: potential tools for use in zoonosis control. Infect Dis Poverty. 2018;7:49.
Article
Google Scholar
Bravo RZB, Leiras A, Cyrino Oliveira FL. The use of UAV s in humanitarian relief: an application of POMDP-based methodology for finding victims. Prod Oper Manage. 2019;28:421–40.
Article
Google Scholar
Kyriakakis NA, Marinaki M, Matsatsinis N, Marinakis Y. A cumulative unmanned aerial vehicle routing problem approach for humanitarian coverage path planning. Eur J Oper Res. 2022;300:992–1004.
Article
Google Scholar
Bhattacharya S, Hossain MM, Hoedebecke K, Bacorro M, Gökdemir Ö, Singh A. Leveraging unmanned aerial vehicle technology to improve public health practice: prospects and barriers. Indian J Commun Medicine. 2020;45:396.
Article
Google Scholar
Neto JC, Resque IS, Avelino RA, Santos VBd, Leite LS, Cesar LO, et al. An adapted unmanned aerial vehicle for environmental water sampling. Química Nova. 2022;45:734–41.
CAS
Google Scholar
Bonnin N, Van Andel AC, Kerby JT, Piel AK, Pintea L, Wich SA. Assessment of chimpanzee nest detectability in drone-acquired images. Drones. 2018;2:17.
Article
Google Scholar
Poljak M, Šterbenc A. Use of drones in clinical microbiology and infectious diseases: current status, challenges and barriers. Clin Microbiol Infect. 2020;26:425–30.
Article
CAS
Google Scholar
Kim J, Kim S, Ju C, Son HI. Unmanned aerial vehicles in agriculture. A review of perspective of platform, control, and applications. IEEE Access. 2019;7:105100–15.
Article
Google Scholar
Kim DH. Regulations and laws pertaining to the use of unmanned aircraft systems (UAS) by ICAO, USA, China, Japan, Australia, India, and Korea. Unmanned aerial vehicles in civilian logistics and supply chain management; 2019. p. 169–207.
Fornace KM, Drakeley CJ, William T, Espino F, Cox J. Mapping infectious disease landscapes: unmanned aerial vehicles and epidemiology. Trends Parasitol. 2014;30:514–9.
Article
Google Scholar
Byrne I, Chan K, Manrique E, Lines J, Wolie RZ, Trujillano F, et al. Technical workflow development for integrating drone surveys and entomological sampling to characterise aquatic larval habitats of Anopheles funestus in agricultural landscapes in Côte d’Ivoire. J Environ Public Health. 2021;2021:3220244.
Article
Google Scholar
Mehra M, Bagri A, Jiang X, Ortiz J. Image analysis for identifying mosquito breeding grounds. In: 2016 IEEE International conference on sensing, communication and networking (SECON workshops); 2016.
Case E, Shragai T, Harrington L, Ren Y, Morreale S, Erickson D. Evaluation of unmanned aerial vehicles and neural networks for integrated mosquito management of Aedes albopictus (Diptera: Culicidae). J Med Entomol. 2020;57:1588–95.
Article
Google Scholar
Li C-X, Zhang Y-M, Dong Y-D, Zhou M-H, Zhang H-D, Chen H-N, et al. An unmanned aerial vehicle-mounted cold mist spray of permethrin and tetramethylfluthrin targeting Aedes albopictus in China. J Am Mosq Control Assoc. 2016;32:59–62.
Article
Google Scholar
Rasmussen E. Drones against vector-borne diseases. Sci Robot. 2020;5:eabc7642.
Article
Google Scholar
Müllerová J, Brůna J, Bartaloš T, Dvořák P, Vítková M, Pyšek P. Timing is important: unmanned aircraft vs. satellite imagery in plant invasion monitoring. Front Plant Sci. 2017;8:887.
Article
Google Scholar
Aragà FV, Zola FC, Marinho LHN, de Genaro Chiroli DM, Junior AB. Choice of unmanned aerial vehicles for identification of mosquito breeding sites. Geospat Health. 2020;15:1.
Google Scholar
Hardy A, Makame M, Cross D, Majambere S, Msellem M. Using low-cost drones to map malaria vector habitats. Parasit Vectors. 2017;10:29.
Article
Google Scholar
Annan E, Guo J, Angulo-Molina A, Yaacob WFW, Aghamohammadi N, Guetterman TC, et al. Community acceptability of dengue fever surveillance using unmanned aerial vehicles: a cross-sectional study in Malaysia, Mexico, and Turkey. Travel Med Infect Dis. 2022;49:102360.
Article
Google Scholar
Fillinger U, Lindsay SW. Larval source management for malaria control in Africa: myths and reality. Malar J. 2011;10:353.
Article
Google Scholar
McCann RS, van den Berg H, Diggle PJ, van Vugt M, Terlouw DJ, Phiri KS, et al. Assessment of the effect of larval source management and house improvement on malaria transmission when added to standard malaria control strategies in southern Malawi: study protocol for a cluster-randomised controlled trial. BMC Infect Dis. 2017;17:639.
Article
Google Scholar
Tusting LS, Thwing J, Sinclair D, Fillinger U, Gimnig J, Bonner KE, et al. Mosquito larval source management for controlling malaria. Cochrane Database Syst Rev. 2013;2013:CD008923.
Google Scholar
Winskill P, Walker PG, Cibulskis RE, Ghani AC. Prioritizing the scale-up of interventions for malaria control and elimination. Malar J. 2019;18:122.
Article
Google Scholar
Bhatt S, Weiss D, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11.
Article
CAS
Google Scholar
Stanton MC, Kalonde P, Zembere K, Hoek Spaans R, Jones CM. The application of drones for mosquito larval habitat identification in rural environments: a practical approach for malaria control? Malar J. 2021;20:244.
Article
Google Scholar
Sarira TV, Clarke K, Weinstein P, Koh LP, Lewis M. Rapid identification of shallow inundation for mosquito disease mitigation using drone-derived multispectral imagery. Geospat Health. 2020;15:1.
Article
Google Scholar
Pádua L, Vanko J, Hruška J, Adão T, Sousa JJ, Peres E, et al. UAS, sensors, and data processing in agroforestry: a review towards practical applications. Int J Remote Sens. 2017;38:2349–91.
Article
Google Scholar
Johnson BJ, Manby R, Devine GJ. Performance of an aerially applied liquid Bacillus thuringiensis var. Israelensis formulation (strain AM65-52) against mosquitoes in mixed saltmarsh–mangrove systems and fine‐scale mapping of mangrove canopy cover using affordable drone‐based imagery. Pest Manage Sci. 2020;76:3822–31.
Article
CAS
Google Scholar
Valdez-Delgado KM, Moo-Llanes DA, Danis-Lozano R, Cisneros-Vázquez LA, Flores-Suarez AE, Ponce-García G, et al. Field effectiveness of drones to identify potential Aedes aegypti breeding sites in household environments from Tapachula, a dengue-endemic city in southern Mexico. Insects. 2021;12:663.
Article
Google Scholar
Carrasco-Escobar G, Manrique E, Ruiz-Cabrejos J, Saavedra M, Alava F, Bickersmith S, et al. High-accuracy detection of malaria vector larval habitats using drone-based multispectral imagery. PLoS Negl Trop Dis. 2019;13:e0007105.
Article
Google Scholar
Suduwella C, Amarasinghe A, Niroshan L, Elvitigala C, De Zoysa K, Keppetiyagama C. Identifying mosquito breeding sites via drone images. In: proceedings of the 3rd workshop on micro aerial vehicle networks, systems, and applications. 2017.
Amarasinghe A, Suduwella C, Niroshan L, Elvitigala C, De Zoysa K, Keppetiyagama C. Suppressing dengue via a drone system. In: 2017 seventeenth int conference on advances in ICT for emerging regions (ICTer); 2017.
Chamberlin AJ, Jones IJ, Lund AJ, Jouanard N, Riveau G, Ndione R, et al. Visualization of schistosomiasis snail habitats using light unmanned aerial vehicles. Geospat Health. 2021;15:1.
Article
Google Scholar
Wood CL, Sokolow SH, Jones IJ, Chamberlin AJ, Lafferty KD, Kuris AM, et al. Precision mapping of snail habitat provides a powerful indicator of human schistosomiasis transmission. Proc Natl Acad Sci USA. 2019;116:23182–91.
Article
CAS
Google Scholar
Hay S, Snow R, Rogers D. From predicting mosquito habitat to malaria seasons using remotely sensed data: practice, problems and perspectives. Parasitol Today. 1998;14:306–13.
Article
CAS
Google Scholar
Tokarz R, Novak RJ. Spatial–temporal distribution of Anopheles larval habitats in Uganda using GIS/remote sensing technologies. Malar J. 2018;17:420.
Article
Google Scholar
Manfreda S, McCabe MF, Miller PE, Lucas R, Pajuelo Madrigal V, Mallinis G, et al. On the use of unmanned aerial systems for environmental monitoring. Remote Sens. 2018;10:641.
Article
Google Scholar
Kalluri S, Gilruth P, Rogers D, Szczur M. Surveillance of arthropod vector-borne infectious diseases using remote sensing techniques: a review. PLoS Pathog. 2007;3:e116.
Article
Google Scholar
Rogers DJ, Randolph SE, Snow RW, Hay SI. Satellite imagery in the study and forecast of malaria. Nature. 2002;415:710–5.
Article
CAS
Google Scholar
Vergouw B, Nagel H, Bondt G, Custers B. Drone technology: types, payloads, applications, frequency spectrum issues and future developments. In: Custers B, editor. The future of drone use. Springer: Berlin; 2016. p. 21–45.
Chapter
Google Scholar
Aircraft FFSSU. Regulations (part 107). Washington, DC: FAA; 2014.
Google Scholar
Authority CA. Unmanned aircraft and drones. Accessed May 2020.
Dubin S, Greve A, Triche R. Drones in international development. USAID GOV; 2020.
Calantropio A, Chiabrando F, Comino J, Lingua A, Maschio P, Juskauskas T. UP4DREAM capacity building project: UAS based mapping in developing countries. Int Arch Photogrammetry Remote Sens Spatial Inform Sci. 2021;43:65–72.
Article
Google Scholar
Anderson K, Westoby MJ, James MR. Low-budget topographic surveying comes of age: structure from motion photogrammetry in geography and the geosciences. Progr Phys Geogr Earth Environ. 2019;43:163–73.
Article
Google Scholar
Zhu Z, Bao T, Hu Y, Gong J. A novel method for fast positioning of non-standardized ground control points in drone images. Remote Sens. 2021;13:2849.
Article
Google Scholar
Joo Y-D. Drone image classification based on convolutional neural networks. J Inst Internet Broadcasting Commun. 2017;17:97–102.
Google Scholar
Yin N, Liu R, Zeng B, Liu N. A review: UAV-based remote sensing. In: IOP conference series: materials science and engineering. IOP Publishing; 2019. p. 062014.
Lien MR, Barker RJ, Ye Z, Westphall MH, Gao R, Singh A, et al. A low-cost and open-source platform for automated imaging. Plant Methods. 2019;15:6.
Article
Google Scholar
Dlamini SN, Beloconi A, Mabaso S, Vounatsou P, Impouma B, Fall IS. Review of remotely sensed data products for disease mapping and epidemiology. Remote Sens Appl Soc Environ. 2019;14:108–18.
Google Scholar
Singh KK, Frazier AE. A meta-analysis and review of unmanned aircraft system (UAS) imagery for terrestrial applications. Int J Remote Sens. 2018;39:5078–98.
Article
Google Scholar
Mukabana WR, Welter G, Ohr P, Tingitana L, Makame MH, Ali AS, et al. Drones for area-wide larval source management of malaria mosquitoes. Drones. 2022;6:180.
Article
Google Scholar
Puri V, Nayyar A, Raja L. Agriculture drones: a modern breakthrough in precision agriculture. J Stat Manage Syst. 2017;20:507–18.
Google Scholar
Giles D, Billing R. Deployment and performance of a UAV for crop spraying. Chem Eng Trans. 2015;44:307–12.
Google Scholar
Pryce J, Choi L, Richardson M, Malone D. Insecticide space spraying for preventing malaria transmission. Cochrane Database Syst Rev. 2018;11:CD012689.
Google Scholar
Raghavendra K, Barik TK, Reddy B, Sharma P, Dash AP. Malaria vector control: from past to future. Parasitol Res. 2011;108:757–79.
Article
Google Scholar
Zhai J, Reynolds B, Huang MH. Unmanned aerial system—new vector control technology. Int Pest Control. 2019;61:152–4.
Google Scholar
Williams GM, Wang Y, Suman DS, Unlu I, Gaugler R. The development of autonomous unmanned aircraft systems for mosquito control. PLoS ONE. 2020;15:e0235548.
Article
CAS
Google Scholar
Bonds J. Ultra-low‐volume space sprays in mosquito control: a critical review. Med Vet Entomol. 2012;26:121–30.
Article
CAS
Google Scholar
Zhan Y, Chen S, Wang G, Fu J, Lan Y. Biological control technology and application based on agricultural unmanned aerial vehicle (UAV) intelligent delivery of insect natural enemies (Trichogramma) carrier. Pest Manage Sci. 2021;77:3259–72.
Article
CAS
Google Scholar
Winskill P, Carvalho DO, Capurro ML, Alphey L, Donnelly CA, McKemey AR. Dispersal of engineered male Aedes aegypti mosquitoes. PLoS Negl Trop Dis. 2015;9:e0004156.
Article
Google Scholar
Benedict MQ. Sterile insect technique: lessons from the past. J Med Entomol. 2021;58:1974–9.
Article
Google Scholar
Gentile JE, Rund SS, Madey GR. Modelling sterile insect technique to control the population of Anopheles gambiae. Malar J. 2015;14:92.
Article
Google Scholar
Bouyer J, Culbert NJ, Dicko AH, Pacheco MG, Virginio J, Pedrosa MC, et al. Field performance of sterile male mosquitoes released from an uncrewed aerial vehicle. Sci Robot. 2020;5:eaba6251.
Article
Google Scholar
Maciel-De-Freitas R, Codeco CT, Lourenco-De-Oliveira R. Daily survival rates and dispersal of Aedes aegypti females in Rio de Janeiro, Brazil. Am J Trop Med Hyg. 2007;76:659–65.
Article
Google Scholar
Harrington LC, Scott TW, Lerdthusnee K, Coleman RC, Costero A, Clark GG, et al. Dispersal of the dengue vector aedes aegypti within and between rural communities. Am J Trop Med Hyg. 2005;72:209–20.
Article
Google Scholar
Marina CF, Liedo P, Bond JG, Osorio R, Valle A, Angulo-Kladt J. R, et al. Comparison of ground release and drone-mediated aerial release of Aedes aegypti sterile males in southern Mexico: efficacy and challenges. Insects. 2022;13:347.
Article
Google Scholar
Embention. Drones against TseTse. https://www.embention.com/projects/drones-against-tsetse/. Accessed 9 Jan 2023.
Torr SJ, Vale GA. Know your foe: lessons from the analysis of tsetse fly behaviour. Trends Parasitol. 2015;31:95–9.
Article
CAS
Google Scholar
Vreysen MJ, Saleh KM, Ali MY, Abdulla AM, Zhu Z-R, Juma KG, et al. Glossina austeni (Diptera: Glossinidae) eradicated on the island of Unguja, Zanzibar, using the sterile insect technique. J Econ Entomol. 2000;93:123–35.
Article
CAS
Google Scholar
Watts AC, Ambrosia VG, Hinkley EA. Unmanned aircraft systems in remote sensing and scientific research: classification and considerations of use. Remote Sens. 2012;4:1671–92.
Article
Google Scholar
Faraji A, Haas-Stapleton E, Sorensen B, Scholl M, Goodman G, Buettner J, et al. Toys or tools? Utilization of unmanned aerial systems in mosquito and vector control programs. J Econ Entomol. 2021;114:1896–909.
Article
Google Scholar
Dewi PT, Hadi GS, Kusnaedi MR, Budiyarto A, Budiyono A. Design of separate lift and thrust hybrid unmanned aerial vehicle. J Instrum Autom Syst. 2015;2:45–51.
Google Scholar
Boon MA, Drijfhout AP, Tesfamichael S. Comparison of a fixed-wing and multi-rotor UAV for environmental mapping applications: a case study. Int Arch Photogrammetry Remote Sens Spatial Inform Sci. 2017;42:W6.
Google Scholar
Ozdemir U, Aktas YO, Vuruskan A, Dereli Y, Tarhan AF, Demirbag K, et al. Design of a commercial hybrid VTOL UAV system. J Intell Robot Syst. 2014;74:371–93.
Article
Google Scholar
Clarke R. The regulation of civilian drones’ impacts on behavioural privacy. Comput Law Secur Rev. 2014;30:286–305.
Article
Google Scholar
Stöcker C, Bennett R, Nex F, Gerke M, Zevenbergen J. Review of the current state of UAV regulations. Remote Sens. 2017;9:459.
Article
Google Scholar
Unija E. Commission implementing regulation (EU) 2019/947 of 24 May 2019 on the rules and procedures for the operation of unmanned aircraft. Official Journal of the European Union; 2019.
Petty RV, Chang EBE. Drone use in aerial pesticide application faces outdated regulatory hurdles. Harvard J Law Tech Dig. 2018. https://jolt.law.harvard.edu/digest/drone-use-pesticide-application. Accessed 9 Jan 2023.
Global Drone Regulations Database. 2017. https://www.droneregulations.info. Accessed 9 Jan 2023.
Boucher P. ‘You wouldn’t have your granny using them’: drawing boundaries between acceptable and unacceptable applications of civil drones. Sci Engin Ethics. 2016;22:1391–418.
Article
Google Scholar
Aydin B. Public acceptance of drones: knowledge, attitudes, and practice. Technol Soc. 2019;59:101180.
Article
Google Scholar
Lee D, Hess DJ, Heldeweg MA. Safety and privacy regulations for unmanned aerial vehicles: a multiple comparative analysis. Technol Soc. 2022;71:102079.
Article
Google Scholar
Bousema T, Griffin JT, Sauerwein RW, Smith DL, Churcher TS, Takken W, et al. Hitting hotspots: spatial targeting of malaria for control and elimination. PLoS Med. 2012;9:e1001165.
Article
Google Scholar
Holst C, Sukums F, Radovanovic D, Ngowi B, Noll J, Winkler AS. Sub-Saharan Africa—the new breeding ground for global digital health. Lancet Digit Health. 2020;2:e160–2.
Article
Google Scholar
MACONDO. Network for the use of drones for malaria vector control. https://www.lshtm.ac.uk/research/centres-projects-groups/macondo. Accessed 9 Jan 2023.
Hardy A, Proctor M, MacCallum C, Shawe J, Abdalla S, Ali R, et al. Conditional trust: community perceptions of drone use in malaria control in Zanzibar. Technol Soc. 2022;68:101895.
Article
Google Scholar
Matese A, Toscano P, Di Gennaro SF, Genesio L, Vaccari FP, Primicerio J, et al. Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture. Remote Sens. 2015;7:2971–90.
Article
Google Scholar
Kirschstein T. Comparison of energy demands of drone-based and ground-based parcel delivery services. Transp Res D. 2020;78:102209.
Article
Google Scholar