Takken W, Knols BG. Malaria vector control: current and future strategies. Trends Parasitol. 2009;25:101–4.
Article
Google Scholar
Matowo NS, Moore J, Mapua S, Madumla EP, Moshi IR, Kaindoa EW, et al. Using a new odour–baited device to explore options for luring and killing outdoor–biting malaria vectors: a report on design and field evaluation of the mosquito landing box. Parasit Vectors. 2013;6:137.
Article
Google Scholar
Okumu FO, Sumaye RD, Matowo NS, Mwangungulu SP, Kaindoa EW, Moshi IR, et al. Outdoor mosquito control using odour–baited devices: development and evaluation of a potential new strategy to complement indoor malaria prevention methods. MalariaWorld J. 2013;4:8.
Google Scholar
Reddy MR, Overgaard HJ, Abaga S, Reddy VP, Caccone A, Kiszewski AE, et al. Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island. Equatorial Guinea Malar J. 2011;10:184.
Google Scholar
Russell TL, Govella NJ, Azizi S, Drakeley CJ, Kachur SP, Killeen GF. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide–treated nets in rural Tanzania. Malar J. 2011;10:80.
Article
Google Scholar
Durnez L, Coosemans M. Residual transmission of malaria: an old issue for new approaches. In: Manguin S, editor. Anopheles mosquitoes: new insights into malaria vectors. London: Intech; 2013. p. 671–704.
Google Scholar
Russell TL, Beebe NW, Cooper RD, Lobo NF, Burkot TR. Successful malaria elimination strategies require interventions that target changing vector behaviours. Malar J. 2013;12:56.
Article
Google Scholar
Kessy ST. A passive odor baited device for controlling Anopheles arabiensis mosquitoes. Dissertation for Award of MSc Degree at University of Dar es Salaam, Tanzania. 2016;1–108.
Sougoufara S, Ottih EC, Tripet F. The need for new vector control approaches targeting outdoor biting Anopheline malaria vector communities. Parasit Vectors. 2020;13:295.
Article
Google Scholar
Okumu FO, Killeen GF, Ogoma S, Biswaro L, Smallegange RC, Mbeyela E, et al. Development and field evaluation of a synthetic mosquito lure that is more attractive than humans. PLoS ONE. 2010;5:e8951.
Article
Google Scholar
Mukabana WR, Mweresa CK, Otieno B, Omusula P, Smallegange RC, Van Loon JJ, et al. A novel synthetic odorant blend for trapping of malaria and other African mosquito species. J Chem Ecol. 2012;38:235–44.
Article
CAS
Google Scholar
Sternberg ED, Waite JL, Thomas MB. Evaluating the efficacy of biological and conventional insecticides with the new ‘MCD bottle’ bioassay. Malar J. 2014;13:499.
Article
Google Scholar
Molleman F. Puddling: from natural history to understanding how it affects fitness. Entomol Exp Appl. 2010;134:107–13.
Article
Google Scholar
Webster B, Cardé RT. Use of habitat odour by host-seeking insects. Biol Rev Camb Philos Soc. 2017;92:1241–9.
Article
Google Scholar
Kwan MW, Bosak A, Kline J, Pita MA, Giel N, Pereira RM, et al. A low–cost, passive release device for the surveillance and control of mosquitoes. Int J Environ Res Public Health. 2019;16:1488.
Article
CAS
Google Scholar
Kweka EJ, Mwang’onde BJ, Kimaro E, Msangi S, Massenga CP, Mahande AM. A resting box for outdoor sampling of adult Anopheles arabiensis in rice irrigation schemes of lower Moshi, northern Tanzania. Malar J. 2009;8:82.
Article
Google Scholar
Kweka EJ, Owino EA, Mwang’onde BJ, Mahande AM, Nyindo M, Mosha F. The role of cow urine in the oviposition site preference of culicine and Anopheles mosquitoes. Parasit Vectors. 2011;4:184.
Article
Google Scholar
Mahande AM, Mwang’onde BJ, Msangi S, Kimaro E, Mnyone LL, Mazigo HD, et al. Is aging raw cattle urine efficient for sampling Anopheles arabiensis Patton? BMC Infect Dis. 2010;10:172.
Article
Google Scholar
Dawit M, Hill SR, Birgersson G, Tekie H, Ignell R. Malaria mosquitoes acquire and allocate cattle urine to enhance life history traits. Malar J. 2022;21:180.
Article
Google Scholar
Debebe Y. Studies on the spatial ecology of malaria and the impact of mass trapping of anopheles mosquitoes on malaria transmission in southern Ethiopia. Doctoral Thesis, Addis Ababa University, Ethiopia. 2020;1–108.
Balama C, Augustino S, Eriksen S, Makonda FS, Amanzi N. Climate change adaptation strategies by local farmers in Kilombero District. Tanzania Ethiop J Environ Stud Manag. 2013;6:724–36.
Article
Google Scholar
Finda MF, Limwagu AJ, Ngowo HS, Matowo NS, Swai JK, Kaindoa E, et al. Dramatic decreases of malaria transmission intensities in Ifakara, south–eastern Tanzania since early 2000s. Malar J. 2018;17:362.
Article
CAS
Google Scholar
Meza FC, Kreppel KS, Maliti DF, Mlwale AT, Mirzai N, Killeen GF, et al. Mosquito electrocuting traps for directly measuring biting rates and host-preferences of Anopheles arabiensis and Anopheles funestus outdoors. Malar J. 2019;18:83.
Article
Google Scholar
Harchut K, Standley C, Dobson A, Klaassen B, Rambaud-Althaus C, Althaus F, et al. Over–diagnosis of malaria by microscopy in the Kilombero Valley, Southern Tanzania: an evaluation of the utility and cost–effectiveness of rapid diagnostic tests. Malar J. 2013;12:159.
Article
Google Scholar
Team RC. R: A Language and Environment for Statistical Computing. R Found. Stat. Comput. 2016.
Wondwosen B, Birgersson G, Seyoum E, Tekie H, Torto B, Fillinger U, et al. Rice volatiles lure gravid malaria mosquitoes. Anopheles arabiensis Sci Rep. 2016;6:37930.
Article
CAS
Google Scholar
Gillies M, Meillon D. The Anophelinae of Africa south of the Sahara (Ethiopian Zoogeographical Region). Johannesburg: S Afr Inst Med Res. 1968. p. 343.
Gillies MT, Coetzee M. A supplement to the Anophelinae of Africa South of the Sahara. Publ S Afr Inst Med Res. 1987;55:1–43.
Google Scholar
Cornel AJ, Porter CH, Collins FH. Polymerase chain reaction species diagnostic assay for Anopheles quadrimaculatus cryptic species (Diptera: Culicidae) based on ribosomal DNA ITS2 sequences. J Med Entomol. 1996;33:109–16.
Article
CAS
Google Scholar
Hunt RH, Coetzee M, Fettene M. The Anopheles gambiae complex: a new species from Ethiopia. Trans R Soc. 1998;92:231–5.
Article
CAS
Google Scholar
Cohuet A, Simard F, Toto JC, Kengne P, Coetzee MA, Fontenille D. Species identification within the Anopheles funestus group of malaria vectors in Cameroon and evidence for a new species. Am J Trop Med Hyg. 2003;69:200–5.
Article
CAS
Google Scholar
Koekemoer LL, Kamau L, Hunt RH, Coetzee M. A cocktail polymerase chain reaction assay to identify members of the Anopheles funestus (Diptera: Culicidae) group. Am J Trop Med Hyg. 2002;66:804–11.
Article
CAS
Google Scholar
Zuur AF, Ieno EN, Elphick CS. A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol. 2010;1:3–14.
Article
Google Scholar
Gillies MT. Studies of house leaving and outside resting of Anopheles gambiae Giles and Anopheles funestus Giles in east Africa. I. The outside resting population. Bull Ent Res. 1954;45:361–74.
Article
Google Scholar
Trawinski PR, Mackay DS. Identification of environmental covariates of West Nile virus vector mosquito population abundance. Vector Borne Zoonotic Dis. 2010;10:515–26.
Article
Google Scholar
Torr SJ. Dose responses of tsetse flies (Glossina) to carbon dioxide, acetone and octenol in the field. Physiol Entomol. 1990;15:93–103.
Article
CAS
Google Scholar