WHO: World Malaria Report. 2010, [http://www.who.int/malaria/world_malaria_report_2010/en/index.html]
Google Scholar
Day N, Dondorp AM: The management of patients with severe malaria. Am J Trop Med Hyg. 2007, 77: 29-35.
PubMed
Google Scholar
Dondorp A, Nosten F, Stepniewska K, Day N, White N: Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet. 2005, 366: 717-725.
Article
PubMed
Google Scholar
Doolan DL, Dobano C, Baird JK: Acquired immunity to malaria. Clin Microbiol Rev. 2009, 22: 13-36. 10.1128/CMR.00025-08.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nie CQ, Bernard NJ, Schofield L, Hansen DS: CD4+ CD25+ regulatory T cells suppress CD4+ T-cell function and inhibit the development of Plasmodium berghe-specific TH1 responses involved in cerebral malaria pathogenesis. Infect Immun. 2007, 75: 2275-2282. 10.1128/IAI.01783-06.
Article
PubMed Central
CAS
PubMed
Google Scholar
Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A: Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 2001, 19: 683-765. 10.1146/annurev.immunol.19.1.683.
Article
CAS
PubMed
Google Scholar
Omer FM, Riley EM: Transforming growth factor beta production is inversely correlated with severity of murine malaria infection. J Exp Med. 1998, 188: 39-48. 10.1084/jem.188.1.39.
Article
PubMed Central
CAS
PubMed
Google Scholar
Steinman RM, Hemmi H: Dendritic cells: translating innate to adaptive immunity. Curr Top Microbiol Immunol. 2006, 311: 17-58. 10.1007/3-540-32636-7_2.
CAS
PubMed
Google Scholar
Manicassamy S, Pulendran B: Modulation of adaptive immunity with Toll-like receptors. Semin Immunol. 2009, 21: 185-193. 10.1016/j.smim.2009.05.005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nathan C, Xie QW: Nitric oxide synthases: roles, tolls, and controls. Cell. 1994, 78: 915-918. 10.1016/0092-8674(94)90266-6.
Article
CAS
PubMed
Google Scholar
Geller DA, Billiar TR: Molecular biology of nitric oxide synthases. Cancer Metastasis Rev. 1998, 17: 7-23. 10.1023/A:1005940202801.
Article
CAS
PubMed
Google Scholar
Rockett KA, Awburn MM, Cowden WB, Clark IA: Killing of Plasmodium falciparu in vitro by nitric oxide derivatives. Infect Immun. 1991, 59: 3280-3283.
PubMed Central
CAS
PubMed
Google Scholar
Kremsner PG, Winkler S, Wildling E, Prada J, Bienzle U, Graninger W, Nussler AK: High plasma levels of nitrogen oxides are associated with severe disease and correlate with rapid parasitological and clinical cure in Plasmodium falciparu malaria. Trans R Soc Trop Med Hyg. 1996, 90: 44-47. 10.1016/S0035-9203(96)90476-9.
Article
CAS
PubMed
Google Scholar
Alper J: Searching for medicine's sweet spot. Science. 2001, 291: 2338-2343. 10.1126/science.291.5512.2338.
Article
CAS
PubMed
Google Scholar
Helenius A, Aebi M: Intracellular functions of N-linked glycans. Science. 2001, 291: 2364-2369. 10.1126/science.291.5512.2364.
Article
CAS
PubMed
Google Scholar
Rudd PM, Elliott T, Cresswell P, Wilson IA, Dwek RA: Glycosylation and the immune system. Science. 2001, 291: 2370-2376. 10.1126/science.291.5512.2370.
Article
CAS
PubMed
Google Scholar
Peng ZG, Chen HS, Guo ZM, Dong B, Tian GY, Wang GQ: Anti-HIV activities of Achyranthes bidentat polysaccharide sulfate in vitro and in vivo. Yao Xue Xue Bao. 2008, 43: 702-706.
CAS
PubMed
Google Scholar
Zou Y, Meng J, Chen W, Liu J, Li X, Li W, Lu C, Shan F: Modulation of phenotypic and functional maturation of murine dendritic cells (DCs) by purified Achyranthes bidentat polysaccharide (ABP). Int Immunopharmacol. 2011, 11: 1103-1108. 10.1016/j.intimp.2011.03.006.
Article
CAS
PubMed
Google Scholar
Chen Q, Liu Z, He JH: Achyranthes bidentat polysaccharide enhances immune response in weaned piglets. Immunopharmacol Immunotoxicol. 2009, 31: 253-260. 10.1080/08923970802439795.
Article
CAS
PubMed
Google Scholar
Deng HB, Cui DP, Jiang JM, Feng YC, Cai NS, Li DD: Inhibiting effects of Achyranthes bidentat polysaccharide and Lycium barbaru polysaccharide on nonenzyme glycation in D-galactose induced mouse aging model. Biomed Environ Sci. 2003, 16: 267-275.
PubMed
Google Scholar
Han SB, Lee CW, Yoon YD, Lee JH, Kang JS, Lee KH, Yoon WK, Lee K, Park SK, Kim HM: Prevention of arthritic inflammation using an oriental herbal combination BDX-1 isolated from Achyranthes bidentat and Atractylodes japonic. Arch Pharm Res. 2005, 28: 902-908. 10.1007/BF02973875.
Article
CAS
PubMed
Google Scholar
Jin LQ, Zheng ZJ, Peng Y, Li WX, Chen XM, Lu JX: Opposite effects on tumor growth depending on dose of Achyranthes bidentat polysaccharides in C57BL/6 mice. Int Immunopharmacol. 2007, 7: 568-577. 10.1016/j.intimp.2006.12.009.
Article
CAS
PubMed
Google Scholar
Taylor-Robinson AW: Regulation of immunity to Plasmodiu: implications from mouse models for blood stage malaria vaccine design. Exp Parasitol. 2010, 126: 406-414. 10.1016/j.exppara.2010.01.028.
Article
CAS
PubMed
Google Scholar
Wu Y, Wang QH, Zheng L, Feng H, Liu J, Ma SH, Cao YM: Plasmodium yoeli: distinct CD4(+)CD25(+) regulatory T cell responses during the early stages of infection in susceptible and resistant mice. Exp Parasitol. 2007, 115: 301-304. 10.1016/j.exppara.2006.09.015.
Article
CAS
PubMed
Google Scholar
Ing R, Segura M, Thawani N, Tam M, Stevenson MM: Interaction of mouse dendritic cells and malaria-infected erythrocytes: uptake, maturation, and antigen presentation. J Immunol. 2006, 176: 441-450.
Article
CAS
PubMed
Google Scholar
Lin ZB, Zhang HN: Anti-tumor and immunoregulatory activities of Ganoderma lucidu and its possible mechanisms. Acta Pharmacol Sin. 2004, 25: 1387-1395.
CAS
PubMed
Google Scholar
TT Cao YM, Torii M: Nitric oxide inhibits the development of Plasmodium yoeli gametocytes into gametes. Parasitol Int. 1998, 47: 157-166.
Google Scholar
Grelli S, d'Ettorre G, Lauria F, Montella F, Di Traglia L, Lichtner M, Vullo V, Favalli C, Vella S, Macchi B: Inverse correlation between CD8+ lymphocyte apoptosis and CD4+ cell counts during potent antiretroviral therapy in HIV patients. J Antimicrob Chemother. 2004, 53: 494-500. 10.1093/jac/dkh105.
Article
CAS
PubMed
Google Scholar
Seixas E, Ostler D: Plasmodium chabaudi chabau i (AS): differential cellular responses to infection in resistant and susceptible mice. Exp Parasitol. 2005, 110: 394-405. 10.1016/j.exppara.2005.03.024.
Article
CAS
PubMed
Google Scholar
Chen G, Liu J, Wang QH, Wu Y, Feng H, Zheng W, Guo SY, Li DM, Wang JC, Cao YM: Effects of CD4(+)CD25(+)Foxp3(+)regulatory T cells on early Plasmodium yoeli 17XL infection in BALB/c mice. Parasitology. 2009, 136: 1107-1120. 10.1017/S0031182009990370.
Article
CAS
PubMed
Google Scholar
Malhotra I, Mungai P, Muchiri E, Ouma J, Sharma S, Kazura JW, King CL: Distinct Th1-and Th2-Type prenatal cytokine responses to Plasmodium falciparu erythrocyte invasion ligands. Infect Immun. 2005, 73: 3462-3470. 10.1128/IAI.73.6.3462-3470.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Othoro C, Moore JM, Wannemuehler KA, Moses S, Lal A, Otieno J, Nahlen B, Slutsker L, Shi YP: Elevated gamma interferon-producing NK cells, CD45RO memory-like T cells, and CD4 T cells are associated with protection against malaria infection in pregnancy. Infect Immun. 2008, 76: 1678-1685. 10.1128/IAI.01420-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Taylor-Robinson AW, Phillips RS: Th1 and Th2 CD4+ T cell clones specific for Plasmodium chabaudi but not for an unrelated antigen protect against blood stage P. chabaudi infection. Eur J Immunol. 1994, 24: 158-164. 10.1002/eji.1830240124.
Article
CAS
PubMed
Google Scholar
Taylor-Robinson AW, Phillips RS, Severn A, Moncada S, Liew FY: The role of TH1 and TH2 cells in a rodent malaria infection. Science. 1993, 260: 1931-1934. 10.1126/science.8100366.
Article
CAS
PubMed
Google Scholar
McCall MB, Sauerwein RW: Interferon-gamma-central mediator of protective immune responses against the pre-erythrocytic and blood stage of malaria. J Leukoc Biol. 2010, 88: 1131-1143. 10.1189/jlb.0310137.
Article
CAS
PubMed
Google Scholar
Su Z, Stevenson MM: Central role of endogenous gamma interferon in protective immunity against blood-stage Plasmodium chabaudi AS infection. Infect Immun. 2000, 68: 4399-4406. 10.1128/IAI.68.8.4399-4406.2000.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mockenhaupt FP, Hamann L, von Gaertner C, Bedu-Addo G, von Kleinsorgen C, Schumann RR, Bienzle U: Common polymorphisms of toll-like receptors 4 and 9 are associated with the clinical manifestation of malaria during pregnancy. J Infect Dis. 2006, 194: 184-188. 10.1086/505152.
Article
CAS
PubMed
Google Scholar
Taylor-Robinson AW, Smith EC: Modulation of experimental blood stage malaria through blockade of the B7/CD28 T-cell costimulatory pathway. Immunology. 1999, 96: 498-504. 10.1046/j.1365-2567.1999.00718.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Iwasaki A, Medzhitov R: Toll-like receptor control of the adaptive immune responses. Nat Immunol. 2004, 5: 987-995. 10.1038/ni1112.
Article
CAS
PubMed
Google Scholar
Coban C, Ishii KJ, Horii T, Akira S: Manipulation of host innate immune responses by the malaria parasite. Trends Microbiol. 2007, 15: 271-278. 10.1016/j.tim.2007.04.003.
Article
CAS
PubMed
Google Scholar
Coban C, Ishii KJ, Kawai T, Hemmi H, Sato S, Uematsu S, Yamamoto M, Takeuchi O, Itagaki S, Kumar N, Horii T, Akira S: Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J Exp Med. 2005, 201: 19-25. 10.1084/jem.20041836.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hisaeda H, Tetsutani K, Imai T, Moriya C, Tu L, Hamano S, Duan X, Chou B, Ishida H, Aramaki A, Shen J, Ishii KJ, Coban C, Akira S, Takeda K, Yasutomo K, Torii M, Himeno K: Malaria parasites require TLR9 signaling for immune evasion by activating regulatory T cells. J Immunol. 2008, 180: 2496-2503.
Article
CAS
PubMed
Google Scholar
Wu X, Gowda NM, Kumar S, Gowda DC: Protein-DNA complex is the exclusive malaria parasite component that activates dendritic cells and triggers innate immune responses. J Immunol. 2010, 184: 4338-4348. 10.4049/jimmunol.0903824.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gowda NM, Wu X, Gowda DC: The nucleosome (histone-DNA complex) is the TLR9-specific immunostimulatory component of Plasmodium falciparu that activates DCs. PLoS One. 2010, 6: 20398-
Article
Google Scholar
Patel SN, Serghides L, Smith TG, Febbraio M, Silverstein RL, Kurtz TW, Pravenec M, Kain KC: CD36 mediates the phagocytosis of Plasmodium falciparu-infected erythrocytes by rodent macrophages. J Infect Dis. 2004, 189: 204-213. 10.1086/380764.
Article
CAS
PubMed
Google Scholar
Serghides L, Kain KC: Peroxisome proliferator-activated receptor gamma-retinoid X receptor agonists increase CD36-dependent phagocytosis of Plasmodium falciparu-parasitized erythrocytes and decrease malaria-induced TNF-alpha secretion by monocytes/macrophages. J Immunol. 2001, 166: 6742-6748.
Article
CAS
PubMed
Google Scholar
Aitman TJ, Cooper LD, Norsworthy PJ, Wahid FN, Gray JK, Curtis BR, McKeigue PM, Kwiatkowski D, Greenwood BM, Snow RW, Hill AV, Scott J: Malaria susceptibility and CD36 mutation. Nature. 2000, 405: 1015-1016. 10.1038/35016636.
Article
CAS
PubMed
Google Scholar
Feng H, Zhu X, Qi Z, Wang Q, Wang G, Pan Y, Li Y, Zheng L, Jiang Y, Shang H, Cui L, Cao Y: Transient attenuated Foxp3 expression on CD4(+) T cells treated with 7D4 mAb contributes to the control of parasite burden in DBA/2 mice infected with lethal Plasmodium chabaudi chabaud AS. Scand J Immunol. 2011, 75: 46-53.
Article
Google Scholar
Vigario AM, Gorgette O, Dujardin HC, Cruz T, Cazenave PA, Six A, Bandeira A, Pied S: Regulatory CD4+ CD25+ Foxp3+ T cells expand during experimental Plasmodiu infection but do not prevent cerebral malaria. Int J Parasitol. 2007, 37: 963-973. 10.1016/j.ijpara.2007.01.004.
Article
CAS
PubMed
Google Scholar
Bueno LL, Morais CG, Araujo FF, Gomes JA, Correa-Oliveira R, Soares IS, Lacerda MV, Fujiwara RT, Braga EM: Plasmodium viva: induction of CD4 + CD25 + FoxP3+ regulatory T cells during infection are directly associated with level of circulating parasites. PLoS One. 2010, 5: 9623-10.1371/journal.pone.0009623.
Article
Google Scholar