Curtis CF, Graves PM: Methods for replacement of malaria vector populations. J Trop Med Hyg. 1988, 91: 43-48.
CAS
PubMed
Google Scholar
Curtis CF: The case for malaria control by genetic manipulation of its vectors. Parasitol Today. 1994, 10: 371-374. 10.1016/0169-4758(94)90222-4.
Article
CAS
PubMed
Google Scholar
Catteruccia F, Nolan T, Loukeris TG, Blass C, Savakis C, Kafatos FC, Crisanti A: Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature. 2000, 405: 959-962. 10.1038/35016096.
Article
CAS
PubMed
Google Scholar
Grossman GL, Rafferty CS, Clayton JR, Stevens TK, Mukabayire O, Benedict MQ: Germline transformation of the malaria vector, Anopheles gambiae, with the piggyBac transposable element. Insect Mol Biol. 2001, 10: 597-604. 10.1046/j.0962-1075.2001.00299.x.
Article
CAS
PubMed
Google Scholar
Perera OP, Harrell RA, Handler AM: Germ-line transformation of the South American malaria vector, Anopheles albimanus, with a piggyBac/EGFP transposon vector is routine and highly efficient. Insect Mol Biol. 2002, 11: 291-297. 10.1046/j.1365-2583.2002.00336.x.
Article
CAS
PubMed
Google Scholar
Ito J, Ghosh A, Moreira LA, Wimmer EA, Jacobs-lorena M: Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature. 2002, 417: 452-455. 10.1038/417452a.
Article
CAS
PubMed
Google Scholar
Kim W, Koo H, Richman AM, Seeley DC, Vizioli J, Klocko AD, O'Brochta DA: Ectopic expression of a cecropin transgene in the human malaria vector mosquito Anopheles gambiae (Diptera: Culicidae): Effects on susceptibility to Plasmodium. J Med Entomol. 2004, 41: 447-455.
Article
CAS
PubMed
Google Scholar
Windbichler N, Papathanos PA, Catteruccia F, Ranson H, Burt A, Crisanti A: Homing endonuclease mediated gene targeting in Anopheles gambiae cells and embryos. Nucl Acids Res. 2007, 35: 5922-5933. 10.1093/nar/gkm632.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dimopoulos G, Christophides GK, Meister S, Schultz J, White KP, Barillas-Mury C, Kafatos FC: Genome expression analysis of Anopheles gambiae: Responses to injury, bacterial challenge, and malaria infection. Proc Natl Acad Sci USA. 2002, 99: 8814-8819. 10.1073/pnas.092274999.
Article
PubMed Central
CAS
PubMed
Google Scholar
Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JMC, Wides R, Salzberg SL, Loftus B, Yandell M, Majoros WH, Rusch DB, Lai ZW, Kraft CL, Abril JF, Anthouard V, Arensburger P, Atkinson PW, Baden H, de Berardinis V, Baldwin D, Benes V, Biedler J: The genome sequence of the malaria mosquito Anopheles gambiae. Science. 2002, 298: 129-149. 10.1126/science.1076181.
Article
CAS
PubMed
Google Scholar
Blandin S, Moita LF, Kocher T, Wilm M, Kafatos FC, Levashina EA: Reverse genetics in the mosquito Anopheles gambiae: targeted disruption of the Defensin gene. EMBO Rep. 2002, 3: 852-856. 10.1093/embo-reports/kvf180.
Article
PubMed Central
CAS
PubMed
Google Scholar
Marinotti O, Calvo E, Nguyen QK, Dissanayake S, Ribeiro JMC, James AA: Genome-wide analysis of gene expression in adult Anopheles gambiae. Insect Mol Biol. 2006, 15: 1-12. 10.1111/j.1365-2583.2006.00610.x.
Article
CAS
PubMed
Google Scholar
Biessmann H, Walter MF, Dimitratos S, Woods D: Isolation of cDNA clones encoding putative odourant binding proteins from the antennae of the malaria-transmitting mosquito, Anopheles gambiae. Insect Mol Biol. 2002, 11: 123-132. 10.1046/j.1365-2583.2002.00316.x.
Article
CAS
PubMed
Google Scholar
Vogt RG: Odorant binding protein homologues of the malaria mosquito Anopheles gambiae; Possible orthologues of the OS-E and OS-F OBPs of Drosophila melanogaster. J Chem Ecol. 2002, 28: 2371-2376. 10.1023/A:1021009311977.
Article
CAS
PubMed
Google Scholar
Xu PX, Zwiebel LJ, Smith DP: Identification of a distinct family of genes encoding atypical odorant-binding proteins in the malaria vector mosquito, Anopheles gambiae. Insect Mol Biol. 2003, 12: 549-560. 10.1046/j.1365-2583.2003.00440.x.
Article
CAS
PubMed
Google Scholar
Hill CA, Fox AN, Pitts RJ, Kent LB, Tan PL, Chrystal MA, Cravchik A, Collins FH, Robertson HM, Zwiebel LJ: G protein coupled receptors in Anopheles gambiae. Science. 2002, 298: 176-178. 10.1126/science.1076196.
Article
CAS
PubMed
Google Scholar
Blandin S, Shiao SH, Moita LF, Janse CJ, Waters AP, Kafatos FC, Levashina EA: Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector Anopheles gambiae. Cell. 2004, 116: 661-670. 10.1016/S0092-8674(04)00173-4.
Article
CAS
PubMed
Google Scholar
Osta MA, Christophides GK, Kafatos FC: Effects of mosquito genes on Plasmodium development. Science. 2004, 303: 2030-2032. 10.1126/science.1091789.
Article
CAS
PubMed
Google Scholar
Riehle MM, Markianos K, Niare O, Xu JN, Li J, Toure AM, Podiougou B, Oduol F, Diawara S, Diallo M, Coulibaly B, Ouatara A, Kruglyak L, Traore SF, Vernick KD: Natural malaria infection in Anopheles gambiae is regulated by a single genomic control region. Science. 2006, 312: 577-579. 10.1126/science.1124153.
Article
CAS
PubMed
Google Scholar
Benedict MQ, Robinson AS: The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends Parasitol. 2003, 19: 349-355. 10.1016/S1471-4922(03)00144-2.
Article
PubMed
Google Scholar
Knipling EF: Sterile-male method of population control. Science. 1959, 130: 902-904. 10.1126/science.130.3380.902.
Article
CAS
PubMed
Google Scholar
Alphey L: Re-engineering the sterile insect technique. Insect Biochem Mol Biol. 2002, 32: 1243-1247. 10.1016/S0965-1748(02)00087-5.
Article
CAS
PubMed
Google Scholar
Thomas DD, Donnelly CA, Wood RJ, Alphey LS: Insect population control using a dominant, repressible, lethal genetic system. Science. 2000, 287: 2474-2476. 10.1126/science.287.5462.2474.
Article
CAS
PubMed
Google Scholar
Alphey L, Nimmo D, O'Connell S, Alphey N: Insect population suppression using engineered insects. Transgenesis and the Management of Vector-Borne Disease. Edited by: Aksoy S. 2008, New York: Springer Science+Business Media, LLC Landes Bioscience, 627: 93-103. [http://www.springer.com]
Chapter
Google Scholar
Robinson AS, Knols BGJ, Voigt G, Hendrichs J: Conceptual framework and rationale. Malar J. 2009, 8 (Suppl 2): S1-
Article
PubMed Central
PubMed
Google Scholar
Andreasen MH, Curtis CF: Optimal life stage for radiation sterilization of Anopheles males and their fitness for release. Med Vet Entomol. 2005, 19: 238-244. 10.1111/j.1365-2915.2005.00565.x.
Article
CAS
PubMed
Google Scholar
Curtis CF: Genetic sex separation in Anopheles arabiensis and the production of sterile hybrids. Bull World Health Organ. 1978, 56: 453-454.
PubMed Central
CAS
PubMed
Google Scholar
Lines JD, Curtis CF: Genetic sexing systems in Anopheles arabiensis Patton (Diptera: Culicidae). J Econ Entomol. 1985, 78: 848-851.
Article
CAS
PubMed
Google Scholar
Alphey L, Andreasen M: Dominant lethality and insect population control. Mol Biochem Parasitol. 2002, 121: 173-178. 10.1016/S0166-6851(02)00040-3.
Article
CAS
PubMed
Google Scholar
Bracken GK, Dondale CD: Fertility and survival of Achaearanea tepidariorum (Araneida:Theridiidae) on a diet of chemosterilized mosquitoes. Can Entomol. 1972, 104: 1709-1712.
Article
Google Scholar
Dame DA, Curtis CF, Benedict MQ, Robinson AS, Knols BGJ: Historical applications of induced sterilisation in field populations of mosquitoes. Malar J. 2009, 8 (Suppl 2): S2-
Article
PubMed Central
PubMed
Google Scholar
Helinski ME, Parker AG, Knols BGJ: Radiation biology of mosquitoes. Malar J. 2009, 8 (Suppl 2): S6-
Article
PubMed Central
PubMed
Google Scholar
Parker A, Mehta K: Sterile insect technique: a model for dose optimization for improved sterile insect quality. Fla Entomol. 2007, 90: 88-95. 10.1653/0015-4040(2007)90[88:SITAMF]2.0.CO;2.
Article
Google Scholar
Shelly TE, Whittier TS, Kaneshiro KY: Sterile insect release and the natural mating system of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). Ann Entomol Soc Am. 1994, 87: 470-481.
Article
Google Scholar
Shelly TE, Edu J, Pahio E: Lack of an irradiation effect on the mating performance of mass-reared males of the Mediterranean fruit fly. Fla Entomol. 2005, 88: 547-548. 10.1653/0015-4040(2005)88[547:LOAIEO]2.0.CO;2.
Article
Google Scholar
Helinski ME, Parker AG, Knols BG: Radiation-induced sterility for pupal and adult stages of the malaria mosquito Anopheles arabiensis. Malar J. 2006, 5: 41-10.1186/1475-2875-5-41.
Article
PubMed Central
PubMed
Google Scholar
Catteruccia F, Benton JP, Crisanti A: An Anopheles transgenic sexing strain for vector control. Nat Biotechnol. 2005, 23: 1414-1417. 10.1038/nbt1152.
Article
CAS
PubMed
Google Scholar
Papathanos PA, Bossin HC, Benedict MQ, Catteruccia F, Malcolm CA, Alphey L, Crisanti A: Sex separation strategies: past experience and new approaches. Malar J. 2009, 8 (Suppl 2): S5-
Article
PubMed Central
PubMed
Google Scholar
Gillott C: Male accessory gland secretions: modulators of female reproductive physiology and behavior. Annu Rev Entomol. 2003, 48: 163-184. 10.1146/annurev.ento.48.091801.112657.
Article
CAS
PubMed
Google Scholar
Wolfner MF: Tokens of love: functions and regulation of Drosophila male accessory gland products. Insect Biochem Mol Biol. 1997, 27: 179-192. 10.1016/S0965-1748(96)00084-7.
Article
CAS
PubMed
Google Scholar
Liu H, Kubli E: Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster. Proc Natl Acad Sci USA. 2003, 100: 9929-9933. 10.1073/pnas.1631700100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Manning A: Control of sexual receptivity in female Drosophila. Anim Behav. 1967, 15: 239-250. 10.1016/0003-3472(67)90006-1.
Article
CAS
PubMed
Google Scholar
Bryan JH: Results of consecutive matings of female Anopheles gambiae species b with fertile and sterile males. Nature. 1958, 218: 489-10.1038/218489a0.
Article
Google Scholar
Bryan JH: Further studies on consecutive matings in the Anopheles gambiae complex. Nature. 1972, 239: 519-520. 10.1038/239519a0.
Article
CAS
PubMed
Google Scholar
Klowden MJ: Sexual receptivity in Anopheles gambiae mosquitoes: absence of control by male accessory gland substances. J Insect Physiol. 2001, 47: 661-666. 10.1016/S0022-1910(00)00127-X.
Article
CAS
PubMed
Google Scholar
Tripet F, Touré YT, Dolo G, Lanzaro GC: Frequency of multiple inseminations in field collected Anopheles gambiae females revealed by DNA analysis of transferred sperm. Am J Trop Med Hyg. 2003, 68: 1-5.
PubMed
Google Scholar
Dottorini T, Nicolaides L, Ranson H, Rogers DW, Crisanti A, Catteruccia F: A genome-wide analysis in Anopheles gambiae mosquitoes reveals 46 male accessory gland genes, possible modulators of female behavior. Proc Natl Acad Sci USA. 2007, 104: 16215-16220. 10.1073/pnas.0703904104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Abrams JM: An emerging blueprint for apoptosis in Drosophila. Trends in Cell Biology. 1999, 9: 435-440. 10.1016/S0962-8924(99)01646-3.
Article
CAS
PubMed
Google Scholar
Song ZW, Steller H: Death by design: mechanism and control of apoptosis. Trends in Biochemical Sciences. 1999, 24: M49-M52. 10.1016/S0968-0004(99)01485-1.
Article
Google Scholar
Vucic D, Seshagiri S, Miller LK: Characterization of reaper- and FADD-induced apoptosis in a lepidopteran cell line. Mol Cell Biol. 1997, 17: 667-676.
Article
PubMed Central
CAS
PubMed
Google Scholar
Evans EK, Kuwana T, Strum SL, Smith JJ, Newmeyer DD, Kornbluth S: Reaper-induced apoptosis in a vertebrate system. EMBO J. 1997, 16: 7372-7381. 10.1093/emboj/16.24.7372.
Article
PubMed Central
CAS
PubMed
Google Scholar
Claveria C, Albar JP, Serrano A, Buesa JM, Barbero JL, Martinez A, Torres M: Drosophila grim induces apoptosis in mammalian cells. EMBO J. 1998, 17: 7199-7208. 10.1093/emboj/17.24.7199.
Article
PubMed Central
CAS
PubMed
Google Scholar
Haining WN, Carboy-Newcomb C, Wei CL, Steller H: The proapoptotic function of Drosophila Hid is conserved in mammalian cells. Proc Natl Acad Sci U S A. 1999, 96: 4936-4941. 10.1073/pnas.96.9.4936.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bergmann A, Agapite J, McCall K, Steller H: The Drosophila gene hid is a direct molecular target of Ras-dependent survival signaling. Cell. 1998, 95: 331-341. 10.1016/S0092-8674(00)81765-1.
Article
CAS
PubMed
Google Scholar
Gossen M, Bujard H: Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA. 1992, 89: 5547-5551. 10.1073/pnas.89.12.5547.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lycett GJ, Kafatos FC, Loukeris TG: Conditional expression in the malaria mosquito Anopheles stephensi with Tet-on and Tet-off systems. Genetics. 2004, 167: 1781-1790. 10.1534/genetics.104.028175.
Article
PubMed Central
CAS
PubMed
Google Scholar
Horn C, Wimmer EA: A transgene-based, embryo-specific lethality system for insect pest management. Nat Biotechnol. 2003, 21: 64-70. 10.1038/nbt769.
Article
CAS
PubMed
Google Scholar
Scolari F, Schetelig MF, Gabrieli P, Siciliano P, Gomulski LM, Karam N, Wimmer EA, Malacrida AR, Gasperi G: Insect transgenesis applied to tephritid pest control. J Appl Entomol. 2008, 132: 820-831. 10.1111/j.1439-0418.2008.01347.x.
Article
CAS
Google Scholar
Schetelig MF, Caceres C, Zacharopoulou A, Franz G, Wimmer EA: Conditional embryonic lethality to improve the sterile insect technique in Ceratitis capitata (Diptera: Tephritidae). BMC Biology. 2009, 7: 4-10.1186/1741-7007-7-4.
Article
PubMed Central
PubMed
Google Scholar
Heinrich JC, Scott MJ: A repressible female-specific lethal genetic system for making transgenic insect strains for a sterile-release program. Proc Natl Acad Sci USA. 2000, 97: 8229-8232. 10.1073/pnas.140142697.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fu G, Condon KC, Epton MJ, Gong P, Jin L, Condon GC, Morrison NI, Dafa'alla T, Alphey L: Female-specific insect lethality engineered using alternative splicing. Nat Biotechnol. 2007, 25: 353-357. 10.1038/nbt1283.
Article
CAS
PubMed
Google Scholar
Phuc HK, Andreasen MH, Burton RS, Vass C, Epton MJ, Pape G, Fu G, Condon KC, Scaife S, Donnelly CA, Coleman PG, White-Cooper H, Alphey L: Late-acting dominant lethal genetic systems and mosquito control. BMC Biology. 2007, 5: 11-10.1186/1741-7007-5-11.
Article
PubMed Central
PubMed
Google Scholar
Gong P, Epton MJ, Fu G, Scaife S, Hiscox A, Condon KC, Condon GC, Morrison NI, Kelly DW, Dafa'alla T, Coleman PG, Alphey L: A dominant lethal genetic system for autocidal control of the Mediterranean fruitfly. Nat Biotechnol. 2005, 23: 453-456. 10.1038/nbt1071.
Article
CAS
PubMed
Google Scholar
Zhou L, Jiang GH, Chan G, Santos CP, Severson DW, Xiao L: Michelob_x is the missing inhibitor of apoptosis protein antagonist in mosquito genomes. EMBO Rep. 2005, 6: 769-774. 10.1038/sj.embor.7400473.
Article
PubMed Central
CAS
PubMed
Google Scholar
Melnattur K, Rawson E, Nambu JR: P[52A-GAL4] is an insertion in the Drosophila GP150 gene. Genesis. 2002, 34: 29-33. 10.1002/gene.10151.
Article
CAS
PubMed
Google Scholar
Newton ME, Wood RJ, Southern DI: A cytogenetic analysis of meiotic drive in the mosquito, Aedes aegypti (L.). Genetica. 1976, 46: 297-318. 10.1007/BF00055473.
Article
Google Scholar
Cha S-J, Mori A, Chadee DD, Severson DW: Cage trials using an endogenous meiotic drive gene in the mosquito Aedes aegypti to promote population replacement. Am J Trop Med Hyg. 2006, 74: 62-68.
PubMed
Google Scholar
Cha S-J, Chadee DD, Severson DW: Population dynamics of an endogenous meiotic drive system in Aedes aegypti. Am J Trop Med Hyg. 2006, 75: 70-77.
PubMed
Google Scholar
Windbichler N, Papathanos PA, Crisanti A: Targeting the X chromosome during spermatogenesis induces Y chromosome transmission ratio distortion and early dominant embryo lethality in Anopheles gambiae. Plos Genetics. 2008, 4: 10.1371/journal.pgen.1000291.
Google Scholar