World Health Organization. World Health Report 2004: Changing history. 2004. http://www.who.int/whr/2004/en/. Accessed 02 February 2014.
Bryce J, Boschi-Pinto C, Shibuya K, Black R.WHO estimates of the causes of death in children. Lancet. 2005; 365:1146–52.
Google Scholar
World Health Organization. World Malaria Report 2012. 2012. http://www.who.int/malaria/publications/world_malaria_report_2012/en/. Accessed 02 February 2014.
Alonso PL, Brown G, Arevalo-Herrera M, Binka F, Chitnis C, Collins F, et al. A research agenda to underpin malaria eradication. PLoS Med. 2011:8:e1000406.
Malcolm CA, El Sayed B, Babiker A, Girod R, Fontenille D, Knols BGJ, et al. Field site selection: getting it right first time around. Malar J. 2009; 8(Suppl 2):S9.
Article
PubMed Central
PubMed
Google Scholar
Alphey N, Coleman PG, Donnelly CA, Alphey L. Managing insecticide resistance by mass release of engineered insects. J Econ Entomol. 2007; 100:1642–9.
Article
CAS
PubMed
Google Scholar
Alphey L, Benedict M, Bellini R, Clark GG, Dame DA, Service MW, et al. Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne Zoonotic Dis. 2010; 10:295–311.
Article
PubMed Central
PubMed
Google Scholar
Knipling EF. Possibilities of insect control or eradication through the use of sexually sterile males. J Econ Entomol. 1955; 48:459–62.
Article
Google Scholar
Tripet F, Touré YT, Dolo G, Lanzaro GC. Frequency of multiple inseminations in field-collected Anopheles gambiae females revealed by DNA analysis of transferred sperm. Am J Trop Med Hyg. 2003; 68:1–5.
PubMed
Google Scholar
Charlwood JD, Jones MDR. Mating behaviour in the mosquito, Anopheles gambiae s.l. I. close range and contact behavior. Physiol Entomol. 1979; 2:111–20.
Article
Google Scholar
Vreysen MJ, Saleh KM, Ali MY, Abdulla AM, Zhu ZR, Juma KG, et al. Glossina austeni, (Diptera : Glossinidae) eradicated on the Island of Unguja, Zanzibar, using the sterile insect technique. J Econ Entomol. 2000; 93:123–135.
Article
CAS
PubMed
Google Scholar
Dantas L, Pereira R, Silva N, Rodrigues A, Costa R. The SIT control programme against Medfly on Madeira Island. In: Proceedings of the 6th International Symposium on fruit flies of economic importance. South Africa: Stellenbosch: 2002.
Google Scholar
Koyama J, Kakinohana H, Miyatake T. Eradication of the melon fly, Bactrocera cucurbitae, in Japan: Importance of behavior, ecology, genetics, and evolution. Annu Rev Entomol. 2004; 49:331–49.
Article
CAS
PubMed
Google Scholar
Krafsur ES, Whitten CJ, Novy JE. Screwworm eradication in North and Central America. Parasitol Today. 1987; 3:131–7.
Article
CAS
PubMed
Google Scholar
Benedict MQ, Robinson AS. The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends Parasitol. 2003; 19:349–55.
Article
PubMed
Google Scholar
Franz G, Robinson AS. Molecular technologies to improve the effectiveness of the sterile insect technique. Genetica. 2011; 139:1–5.
Article
PubMed
Google Scholar
Nolan T, Papathanos P, Windbichler N, Magnusson K, Benton J, Catteruccia F, et al. Developing transgenic Anopheles mosquitoes for the sterile insect technique. Genetica. 2011; 139:33–9.
Article
CAS
PubMed
Google Scholar
Alphey L, Beard CB, Billingsley P, Coetzee M, Crisanti A, Curtis C, et al. Malaria control with genetically manipulated insect vectors. Science. 2002; 298:119–21.
Article
CAS
PubMed
Google Scholar
Alphey L, Nimmo D, O’Connell S, Alphey N. Insect population suppression using engineered insects. Adv Exp Med Biol. 2008; 627:93–103.
Article
CAS
PubMed
Google Scholar
Thomas D, Donnelly C, Wood R, Alphey L. Insect population control using a dominant, repressible, lethal genetic system. Science. 2000; 287:2474–6.
Article
CAS
PubMed
Google Scholar
Heinrich JC, Scott MJ. A repressible female-specific lethal genetic system for making transgenic insect strains suitable for a sterile-release program. Proc Natl Acad Sci USA. 2000; 97:8229–32.
Article
PubMed Central
CAS
PubMed
Google Scholar
Phuc HK, Andreasen MH, Burton RS, Vass C, Epton MJ, Pape G, et al. Late-acting dominant lethal genetic systems and mosquito control. BMC Biol. 2007; 5:11.
Article
PubMed Central
PubMed
Google Scholar
Bargielowski I, Nimmo D, Alphey L, Koella JC. Comparison of life history characteristics of the genetically modified OX513A line and a wild type strain of Aedes aegypti. PLoS One. 2011; e20699:6.
Google Scholar
Fu G, Lees RS, Nimmo D, Aw D, Jin L, Gray P, et al. Female-specific flightless phenotype for mosquito control. Proc Natl Acad Sci U S A. 2010; 107:4550–4.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wise de Valdez MR, Nimmo D, Betz J, Gong HF, James AA, Alphey L, et al. Genetic elimination of dengue vector mosquitoes. Proc Natl Acad Sci U S A. 2011; 108:4772–5.
Article
PubMed Central
PubMed
Google Scholar
Harris AF, Nimmo D, McKemey AR, Kelly N, Scaife S, Donnelly CA, et al. Field performance of engineered male mosquitoes. Nat Biotechnol. 2011; 29:1034–7.
Article
CAS
PubMed
Google Scholar
Harris A, McKemey A, Nimmo D, Curtis Z, Black I, Morgan S, et al. Successful suppression of a field mosquito population by sustained release of engineered male mosquitoes. Nat Biotechnol. 2012; 30:828–30.
Article
CAS
PubMed
Google Scholar
Lacroix R, McKemey AR, Raduan N, Kwee Wee L, Hong Ming W, Guat Ney T, et al. Open field release of genetically engineered sterile male Aedes aegypti in Malaysia. PLoS One. 2012; e42771:7.
Google Scholar
Howell PI, Knols BG. Male mating biology. Malar J. 2009; 8(Suppl 2):1–10.
Article
Google Scholar
Mayer DG, Atzeni MG, Stuart MA, Anaman KA, Butler DG. Mating competitiveness of irradiated flies for screwworm fly eradication campaigns. Prev Vet Med. 1998; 36:1–9.
Article
CAS
PubMed
Google Scholar
Andreasen MH, Curtis CF. Optimal life stage for radiation sterilization of Anopheles males and their fitness for release. Med Vet Entomol. 2005; 19:238–44.
Article
CAS
PubMed
Google Scholar
Catteruccia F, Benton JP, Crisanti A. An Anopheles transgenic sexing strain for vector control. Nat Biotechnol. 2005; 23:1414—7.
Article
PubMed
Google Scholar
Howell P, Benedict MQ. Mating competitiveness of Anopheles arabiensis males as a function of transgenic state and genetic similarity to females. J Insect Behav. 2009; 22:477–91.
Article
Google Scholar
Lee HL, Vasan S, Ahmad NW, Idris I, Hanum N, Selvi S, et al. Mating compatibility and competitiveness of transgenic and wild type Aedes aegypti; (L.) under contained semi-field conditions. Transgenic Res. 2013; 22:47–57.
Article
CAS
PubMed
Google Scholar
Klein TA, Windbichler N, Deredec A, Burt A. Benedict MQ. Infertility resulting from transgenic I-PpoI male Anopheles gambiae, in large cage trials. Pathog Glob Health. 2012; 106:20–31.
Article
PubMed Central
CAS
PubMed
Google Scholar
Windbichler N, Papathanos PA, Crisanti A. Targeting the X chromosome during spermatogenesis induces Y chromosome transmission ratio distortion and early dominant embryo lethality in Anopheles gambiae. PLoS Genet. 2008; 4:e1000291.
Article
PubMed Central
PubMed
Google Scholar
Thailayil J, Magnusson K, Godfray CJH, Crisanti A, Catteruccia F. Spermless males elicit large-scale female responses to mating in the malaria mosquito Anopheles gambiae. Proc Natl Acad Sci U S A. 2011; 108:13677–81.
Article
PubMed Central
CAS
PubMed
Google Scholar
Foster GG, Vogt WG, Woodburn TL, Smith PH. Computer simulation of genetic control. Comparison of sterile males and field-killing female solutions. Theor Appl Genet. 1988; 76:870–9.
CAS
Google Scholar
Schliekelman P, Gould F. Pest control by the introduction of a conditional lethal trait on multiple loci: Potential, limitations, and optimal strategies. J Econ Entomol. 2000; 93:1543–65.
Article
CAS
PubMed
Google Scholar
Schliekelman P, Gould F. Pest control by the release of insects carrying a female-killing allele on multiple loci. J Econ Entomol. 2000; 93:1566–79.
Article
CAS
PubMed
Google Scholar
Barclay HJ. Modeling incomplete sterility in a sterile release program: interactions with other factors. Popul Ecol. 2001; 43:197–206.
Article
Google Scholar
Esteva L, Yang HM. Mathematical model to assess the control of Aedes aegypti mosquitoes by the sterile insect technique. Math Biosci. 2005; 198:132–47.
Article
PubMed
Google Scholar
Dye C. Models for the population-dynamics of the yellow-fever mosquito, Aedes aegypti. J Anim Ecol. 1984; 53:247–68.
Article
Google Scholar
Kean JM, Wee SL, Stephens AEA, Suckling DM. Modelling the effects of inherited sterility for the application of the sterile insect technique. Agric Forest Entomol. 2008; 10:101–10.
Article
Google Scholar
Yakob L, Bonsall MB. Importance of Space and Competition in Optimizing Genetic Control Strategies. Biol Microb Control. 2009; 102:50–7.
Google Scholar
White SM, Rohani P, Sait SM. Modelling pulsed releases for sterile insect techniques: fitness costs of sterile and transgenic males and the effects on mosquito dynamics. J Appl Ecol. 2010; 47:1329–39.
Article
Google Scholar
Deredec A, Godfray CJH, Burt A. Requirements for effective malaria control with homing endonuclease genes. Proc Natl Acad Sci USA. 2011; 108:E874–80.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dumont Y, Tchuenche JM. Mathematical studies on the sterile insect technique for the Chikungunya disease and Aedes albopictus. J Math Biol. 2011; 65:1–46.
Google Scholar
Lee SS, Baker RE, Gaffney EA, White SM. Modelling Aedes aegypti mosquito control via transgenic and sterile insect techniques: Endemics and emerging outbreaks. J Theor Biol. 2013; 331:78–90.
Article
Google Scholar
Arifin SM, Zhou Y, Davis G, Gentile JE, Madey GR, Collins FH. An agent-based model of the population dynamics of Anopheles gambiae. Malar J. 2014; 13:424.
Article
PubMed Central
PubMed
Google Scholar
Yaro AS, Dao A, Adamou A, Crawford JE, Ribeiro JMC, Gwadz R, et al. The distribution of hatching time in Anopheles gambiae. Malar J. 2006; 5:19.
Article
PubMed Central
PubMed
Google Scholar
Styer LM, Carey JR, Wang JL, Scott TW. Mosquitoes do senesce: departure from the paradigm of constant mortality. Am J Trop Med Hyg. 2007; 76:111.
PubMed Central
PubMed
Google Scholar
Yakob L, Alphey L, Bonsall MB. Aedes aegypti control: the concomitant role of competition, space and transgenic technologies. J Appl Ecol. 2008; 45:1258–1265.
Article
Google Scholar