WHO. World malaria report 2014. Geneva: World Health Organization; 2014.
Google Scholar
Doolan DL, Doban C, Baird JK. Acquired immunity to malaria. Clin Microbiol Rev. 2009;22:13–36.
Article
PubMed Central
CAS
PubMed
Google Scholar
Taylor SM, Parobek CM, Fairhurst RM. Haemoglobinopathies and the clinical epidemiology of malaria: a systematic review and meta-analysis. Lancet Infect Dis. 2012;12:457–68.
Article
PubMed Central
PubMed
Google Scholar
Lopera-Mesa TM, Doumbia S, Konate D, Anderson JM, Doumbouya M, Keita AS, et al. Impact of red blood cell variants on childhood malaria in Mali: a prospective cohort study. Lancet Haematol. 2015;2:e140–9.
Article
PubMed
Google Scholar
de Mendonca VR, Goncalves MS, Barral-Netto M. The host genetic diversity in malaria infection. J Trop Med. 2012;2012:940616.
Article
PubMed Central
PubMed
Google Scholar
Driss A, Hibbert JM, Wilson NO, Iqbal SA, Adamkiewicz TV, Stiles JK. Genetic polymorphisms linked to susceptibility to malaria. Malar J. 2011;10:271.
Article
PubMed Central
PubMed
Google Scholar
Mackinnon MJ, Mwangi TW, Snow RW, Marsh K, Williams TN. Heritability of malaria in Africa. PLoS Med. 2005;2:e340.
Article
PubMed Central
PubMed
Google Scholar
Gong L, Maiteki-Sebuguzi C, Rosenthal PJ, Hubbard AE, Drakeley CJ, Dorsey G, et al. Evidence for both innate and acquired mechanisms of protection from Plasmodium falciparum in children with sickle cell trait. Blood. 2012;119:3808–14.
Article
PubMed Central
CAS
PubMed
Google Scholar
Day NP, Hien TT, Schollaardt T. The prognostic and pathophysiologic role of pro- and anti-inflammatory cytokines in severe malaria. J Infect Dis. 1999;180:1288–97.
Article
CAS
PubMed
Google Scholar
Dodoo D, Omer FM, Todd J, Akanmori BD, Koram KA, Riley EM. Absolute levels and ratios of pro-inflammatory and anti-inflammatory cytokine production in vitro predict clinical immunity to Plasmodium falciparum malaria. J Infect Dis. 2002;185:971–9.
Article
CAS
PubMed
Google Scholar
Were T, Hittner JB, Ouma C, Otieno RO, Orago ASS, Ong’echa JM, et al. Suppression of RANTES in children with Plasmodium falciparum malaria. Haematologica. 2006;91:1396–9.
CAS
PubMed
Google Scholar
John CC, Opika-Opoka R, Byarugaba J, Idro R, Boivin MJ. Low levels of RANTES are associated with mortality in children with cerebral malaria. J Infect Dis. 2006;194:837–45.
Article
PubMed
Google Scholar
Dietmann A, Helbok R, Lackner P, Issifou S, Lell B, Matsiegui PB, et al. Matrix metalloproteinases and their tissue inhibitors (TIMPs) in Plasmodium falciparum malaria: serum levels of TIMP-1 are associated with disease severity. J Infect Dis. 2008;197:1614–20.
Article
CAS
PubMed
Google Scholar
Perera MK, Herath NP, Pathirana SL, Phone-Kyaw M, Alles HK, Mendis KN, et al. Association of high plasma TNF-alpha levels and TNF-alpha/IL-10 ratios with TNF2 allele in severe P. falciparum malaria patients in Sri Lanka. Pathog Glob Health. 2013;107:21–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mahanta A, Kar SK, Kakati S, Baruah S. Heightened inflammation in severe malaria is associated with decreased IL-10 expression levels and neutrophils. Innate Immun. 2015;21:546–52.
Article
CAS
PubMed
Google Scholar
Tangteerawatana P, Krudsood S, Kanchanakhan N, Troye-Blomberg M, Khusmith S. Low monocyte to neutrophil ratio in peripheral blood associated with disease complication in primary Plasmodium falciparum infection. Southeast Asian J Trop Med Public Health. 2014;45:517–30.
CAS
PubMed
Google Scholar
Luster AD. The role of chemokines in linking innate and adaptive immunity. Curr Opin Immunol. 2002;14:129–35.
Article
CAS
PubMed
Google Scholar
Majka M, Janowska-Wieczorek A, Ratajczak J, Ehrenman K, Pietrzkowski Z, Kowalska MA, et al. Numerous growth factors, cytokines, and chemokines are secreted by human CD34+ cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner. Blood. 2001;97:3075–85.
Article
CAS
PubMed
Google Scholar
Ochiel DO, Gordon A, Keller CC, Hittner JB, Kremsner PG, Weinberg JB, et al. Differential regulation of β-chemokines in children with Plasmodium falciparum malaria. Infect Immun. 2005;73:4190–7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sarfo BY, Armah HB, Irune I, Adjei AA, Olver CS, Singh S, et al. Plasmodium yoelii 17XL infection upregulates RANTES, CCR1, CCR3, and CCR5 expression, and it induces ultrastructural changes in the cerebellum. Malar J. 2005;4:63.
Article
PubMed Central
PubMed
Google Scholar
Wright DE, Bowman EP, Wagers AJ, Butcher EC, Weissman IL. Hematopoietic stem cells are uniquely selective in their migratory response to chemokines. J Exp Med. 2002;195:1145–54.
Article
PubMed Central
CAS
PubMed
Google Scholar
An P, Nelson GW, Wang L, Donfield S, Goedert JJ, Phair J, et al. Modulating influence on HIV/AIDS by interacting RANTES gene variants. Proc Natl Acad Sci USA. 2002;99:10002–7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liu H, Chao D, Nakayama EE, Taguchi H, Goto M, Xin X, et al. Polymorphism in RANTES chemokine promoter affects HIV-1 disease progression. Proc Natl Acad Sci USA. 1999;96:4581–5.
Article
PubMed Central
CAS
PubMed
Google Scholar
Were T, Davenport GC, Yamoa EO, Hittnerd JB, Awandare GA, Otieno MF, et al. Naturally-acquired hemozoin by monocytes promotes suppression of RANTES in children with malarial anemia through an IL-10-dependent mechanism. Microbes Infect. 2009;11:811–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
McDermott DH, Beecroft MJ, Kleeberger CA, Al-Sharif FM, Ollier WE, Zimmerman PA, et al. Chemokine RANTES promoter polymorphism affects risk of both HIV infection and disease progression in the Multicentre AIDS Cohort Study. AIDS. 2000;14:2671–8.
Article
CAS
PubMed
Google Scholar
Wichukchinda N, Nakayama EE, Rojanawiwat A, Pathipvanich P, Auwanit W, Vongsheree S, et al. Protective effects of IL4-589T and RANTES -28G on HIV-disease progression in infected Thai females. AIDS. 2006;20:189–96.
Article
CAS
PubMed
Google Scholar
Koizumi Y, Kageyama S, Fujiyama Y, Miyashita M, Lwembe R, Ogino K, et al. RANTES -28G delays and DC-SIGN -139C enhances AIDS progression in HIV type 1-infected Japanese hemophiliacs. AIDS Res Hum Retroviruses. 2007;23:713–9.
Article
CAS
PubMed
Google Scholar
Gonzalez E, Dhanda R, Bamshad M, Mummidi S, Geevarghese R, Catano G, et al. Global survey of genetic variation in CCR5, RANTES, and MIP-1alpha: impact on the epidemiology of the HIV-1 pandemic. Proc Natl Acad Sci USA. 2001;98:5199–204.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhao XY, Lee SS, Wong KH, Chan KC, Ma S, Yam WC, et al. Effects of single nucleotide polymorphisms in the RANTES promoter region in healthy and HIV-infected indigenous Chinese. Eur J Immunogenetics. 2004;31:179–83.
Article
CAS
Google Scholar
Cooke GS, Kerrie T, Ramaley PA, Kaleebu P, Zhuang J, Nakiyingi JS, et al. A polymorphism that reduces RANTES expression is associated with protection from death in HIV-seropositive Ugandans with Advanced disease. J Infect Dis. 2006;194:666–9.
Article
CAS
PubMed
Google Scholar
Paxton WA, Neumann AU, Kang S, Deutch L, Brown RC, Koup RA, et al. RANTES production from CD4+ lymphocytes correlates with host genotype and rates of human immunodeficiency virus type 1 disease progression. J Infect Dis. 2001;183:1678–81.
Article
CAS
PubMed
Google Scholar
Virani SS, Nambi V, Hoogeveen R, Wasserman BA, Coresh J, Gonzalez F, et al. Relationship between circulating levels of RANTES (regulated on activation, normal T-cell expressed, and secreted) and carotid plaque characteristics: the Atherosclerosis Risk in Communities (ARIC) Carotid MRI Study. Eur Heart J. 2011;32:459–68.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liao CH, Yao TC, Chung HT, See LC, Kuo ML, Huang JL. Polymorphisms in the promoter region of RANTES and the regulatory region of monocyte chemo attractant protein-1 among Chinese children with systemic lupus erythematosus. J Rheumatol. 2004;31:2062–7.
CAS
PubMed
Google Scholar
Yao TC, Kuo ML, See LC, Chen LC, Yan DC, Ou LS, Shaw CK, Huang JL. The RANTES promoter polymorphism: a genetic risk factor for near-fatal asthma in Chinese children. J Allergy Clin Immunol. 2003;111:1285–92.
Article
CAS
PubMed
Google Scholar
Nickel RG, Casolaro V, Wahn U, Beyer K, Barnes KC, Plunkett BS, et al. Atopic dermatitis is associated with a functional mutation in the promoter of the C–C chemokine RANTES. J Immunol. 2000;164:1612–6.
Article
CAS
PubMed
Google Scholar
Tanaka KR, Roberts MH, Yamamoto N, Sugiura H, Uehara M, Hopkin JM. Upregulating promoter polymorphisms of RANTES relate to atopic dermatitis. Int J Immunogenet. 2006;33:423–8.
Article
CAS
PubMed
Google Scholar
Nakajima K, Tanaka Y, Nomiyama T, Ogihara T, Ikeda F, Kanno R, et al. RANTES promoter genotype is associated with diabetic nephropathy in type 2 diabetic subjects. Diabetes Care. 2003;26:892–8.
Article
CAS
PubMed
Google Scholar
Simeoni E, Winkelmann BR, Hoffmann MM, Fleury S, Ruiz J, Kappenberger L, et al. Association of RANTES G-403A gene polymorphism with increased risk of coronary arteriosclerosis. Eur Heart J. 2004;25:143846.
Article
Google Scholar
Krüger B, Boger CA, Obed A, Farkas S, Hoffmann U, Banas B, et al. RANTES/CCL5 polymorphisms as a risk factor for recurrent acute rejection. Clin Transplant. 2007;21:385–90.
Article
PubMed
Google Scholar
Dossou-Yovo OP, Zaccaria I, Benkerrou M, Hauchecorne M, Alberti C, Rahimy MC, et al. Effects of RANTES and MBL2 gene polymorphisms in sickle cell disease clinical outcomes: association of the g.In1.1T>C RANTES variant with protection against infections. Am J Hematol. 2009;84:378–80.
Article
CAS
PubMed
Google Scholar
Ministry of Health. Uganda malaria indicator survey 2009. 2010. p. 1–3.
Okello PE, Van Bortel W, Byaruhanga AM, Correwyn A, Roelants P, Talisuna A, et al. Variation in malaria transmission intensity in seven sites throughout Uganda. Am J Trop Med Hyg. 2006;75:219–25.
PubMed
Google Scholar
de Onis M, Onyango AW, Borghi E, Garza C, Yang H. WHO Multicentre Growth Reference Study Group: comparison of the World Health Organization Child Growth Standards and the National Center for Health Statistics/WHO international growth reference: implications for child health programmes. Public Health Nutr. 2006;9:942–7.
PubMed
Google Scholar
WHO. Basic malaria microscopy Part I Learner’s guide. 2nd ed. Geneva: World Health Organization; 2010. p. 74–5.
Google Scholar
WHO. Communicable diseases cluster: severe falciparum malaria. Trans R Soc Trop Med Hyg. 2009;94(Suppl 1):S1–90.
Google Scholar
Bejon P, Berkley JA, Mwangi T, Ogada E, Mwangi I, Maitland K, et al. Defining childhood severe falciparum malaria for intervention studies. PLoS Med. 2007;4:e251.
Article
PubMed Central
PubMed
Google Scholar
Hajeer AH, Al Sharif F, Ollier WER. A polymorphism at position −403 in the human RANTES promoter. Eur J Immunogenet. 1999;26:375–6.
Article
CAS
PubMed
Google Scholar
Rathore A, Chatterjee A, Sivarama P, Yamamoto N, Singhal PK, Dhole TN. Association of RANTES 403 G/A, 28 C/G and In1.1 T/C Polymorphism With HIV-1 Transmission and Progression Among North Indians. J Med Virol. 2008;80:1133–41.
Article
CAS
PubMed
Google Scholar
Parikh S, Dorsey G, Rosenthal PJ. Host polymorphisms and the incidence of malaria in Ugandan children. Am J Trop Med Hyg. 2004;71:750–3.
CAS
PubMed
Google Scholar
McClean P. Population and evolutionary genetics. 1998. https://www.ndsu.edu/pubweb/~mcclean/plsc431/popgen/popgen4.htm.
Panda AK, Panda SK, Sahu AN, Tripathy R, Ravindran B, Das BK. Association of ABO blood group with severe falciparum malaria in adults: case control study and meta-analysis. Malar J. 2011;10:309.
Article
PubMed Central
PubMed
Google Scholar
Rowe JA, Handel IG, Thera MA, Deans AM, Lyke KE, Kone A, et al. Blood group O protects against severe Plasmodium falciparum malaria through the mechanism of reduced rosetting. Proc Natl Acad Sci USA. 2007;104:17471–6.
Article
PubMed Central
CAS
PubMed
Google Scholar