Lengeler C: Insecticide treated bed nets and curtains for preventing malaria. Cochrane Database Syst Rev 2004;CD000363.
Pluess B, Tanser FC, Lengeler C, Sharp BL. Indoor residual spraying for preventing malaria. Cochrane Database Syst Rev 2010; CD006657.
WHO. World malaria report 2012. Geneva: World Health Organization, 2012.
WHO: Global plan for insecticide resistance management. Geneva: World Health Organization, 2012.
Hemingway J. The role of vector control in stopping the transmission of malaria: threats and opportunities. Philos Trans R Soc. 2014;369:1645.
Article
Google Scholar
WHO: Guidelines for laboratory and field testing of long‐lasting insecticidal nets. World Health Organisation 2013:WHO/HTM/NTD/WHOPES/2013.2013.
WHO. Guidelines for testing mosquito adulticides for indoor residual spraying (IRS) and for treatment of mosquito nets (ITNs). WHO/CDS/WHOPES/GCDPP/20063, Geneva:World Health Organization, 2006.
Koudou BG, Koffi AA, Malone D, Hemingway J. Efficacy of PermaNet® 2.0 and PermaNet® 3.0 against insecticide-resistant Anopheles gambiae in experimental huts in Côte d’Ivoire. Malar J. 2011;10:172.
Article
PubMed Central
PubMed
Google Scholar
Ngufor C, Chouaïbou M, Tchicaya E, Loukou B, Kesse N, N’Guessan R, et al. Combining organophosphate-treated wall linings and long-lasting insecticidal nets fails to provide additional control over long-lasting insecticidal nets alone against multiple insecticide-resistant Anopheles gambiae in Côte d’Ivoire: an experimental hut trial. Malar J. 2014;13:396.
Article
PubMed Central
PubMed
Google Scholar
Ngufor C, N’guessan R, Fagbohoun J, Odjo A, Malone D, Akogbeto M, et al. Olyset Duo® (a pyriproxyfen and permethrin mixture net): an experimental hut trial against pyrethroid resistant Anopheles gambiae and Culex quinquefasciatus in Southern Benin. PLoS One. 2014;9:e93603.
Article
PubMed Central
PubMed
Google Scholar
Ngufor C, Tungu P, Malima R, Kirby M, Kisinza W, Rowland M. Insecticide-treated net wall hangings for malaria vector control: an experimental hut study in north-eastern Tanzania. Malar J. 2014;13:366.
Article
PubMed Central
PubMed
Google Scholar
Tungu P, Magesa S, Maxwell C, Malima R, Masue D, Sudi W, et al. Evaluation of PermaNet 3.0 a deltamethrin-PBO combination net against Anopheles gambiae and pyrethroid resistant Culex quinquefasciatus mosquitoes: an experimental hut trial in Tanzania. Malar J. 2010;9:21.
Article
PubMed Central
PubMed
Google Scholar
Pennetier C, Bouraima A, Chandre F, Piameu M, Etang J, Rossignol M, et al. Efficacy of Olyset Plus, a new long-lasting insecticidal net Incorporating permethrin and piperonil-butoxide against multi-resistant malaria vectors. PLoS One. 2013;8:e75134.
Article
PubMed Central
CAS
PubMed
Google Scholar
Strode C, Donegan S, Garner P, Enayati AA, Hemingway J. The impact of pyrethroid resistance on the efficacy of insecticide-treated bed nets against African anopheline mosquitoes: systematic review and meta-analysis. PLoS Med. 2014;11:e1001619.
Article
PubMed Central
PubMed
Google Scholar
WHO: Third meeting of the Vector Control Advisory Group. Geneva. World Health Organization, 2015.
Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520–9.
CAS
PubMed
Google Scholar
Fanello C, Santolamazza F, della Torre A. Simultaneous identification of species and molecular forms of the Anopheles gambiae complex by PCR-RFLP. Med Vet Entomol. 2002;16:461–4.
Article
CAS
PubMed
Google Scholar
Bass C, Nikou D, Donnelly MJ, Williamson MS, Ranson H, Ball A, et al. Detection of knockdown resistance (kdr) mutations in Anopheles gambiae: a comparison of two new high-throughput assays with existing methods. Malar J. 2007;6:111.
Article
PubMed Central
PubMed
Google Scholar
Jones CM, Liyanapathirana M, Agossa FR, Weetman D, Ranson H, Donnelly MJ, et al. Footprints of positive selection associated with a mutation (N1575Y) in the voltage-gated sodium channel of Anopheles gambiae. Proc Nat Acad Sci USA. 2012;109:6614–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bass C, Nikou D, Vontas J, Donnelly MJ, Williamson MS, Field LM. The Vector Population Monitoring Tool (VPMT): high-throughput DNA-based diagnostics for the monitoring of mosquito vector populations. Malar Res Treat. 2010;2010:190434.
PubMed Central
PubMed
Google Scholar
Mitchell SN, Stevenson BJ, Muller P, Wilding CS, Egyir-Yawson A, Field SG, et al. Identification and validation of a gene causing cross-resistance between insecticide classes in Anopheles gambiae from Ghana. Proc Nat Acad Sci USA. 2012;109:6147–52.
Article
PubMed Central
CAS
PubMed
Google Scholar
Johnson PC, Barry SJ, Ferguson HM, Müller P. Power analysis for generalized linear mixed models in ecology and evolution. Methods Ecol Evol. 2015;6:133–42.
Article
PubMed Central
PubMed
Google Scholar
N’Guessan R, Corbel V, Akogbeto M, Rowland M. Reduced efficacy of insecticide-treated nets and indoor residual spraying for malaria control in pyrethroid resistance area, Benin. Emerg Infect Dis. 2007;13:199–206.
Article
PubMed Central
PubMed
Google Scholar
Asidi A, N’Guessan R, Akogbeto M, Curtis C, Rowland M. Loss of household protection from use of insecticide-treated nets against pyrethroid-resistant mosquitoes, Benin. Emerg Infect Dis. 2012;18:1101–6.
Article
PubMed Central
PubMed
Google Scholar
Dabiré KR, Diabaté A, Djogbenou L, Ouari A, N’Guessan R, Ouédraogo J-B, et al. Dynamics of multiple insecticide resistance in the malaria vector Anopheles gambiae in a rice growing area in South-Western Burkina Faso. Malar J. 2008;7:188.
Article
PubMed Central
PubMed
Google Scholar
Lehmann T, Diabate A. The molecular forms of Anopheles gambiae: a phenotypic perspective. Infect Genet Evol. 2008;8:737–46.
Article
PubMed Central
CAS
PubMed
Google Scholar
Essandoh J, Yawson AE, Weetman D. Acetylcholinesterase (Ace-1) target site mutation 119S is strongly diagnostic of carbamate and organophosphate resistance in Anopheles gambiae s.s. and Anopheles coluzzii across southern Ghana. Malar J. 2013;12:404.
Article
PubMed Central
PubMed
Google Scholar
Edi CV, Djogbénou L, Jenkins AM, Regna K, Muskavitch MA, Poupardin R, et al. CYP6 P450 enzymes and ACE-1 duplication produce extreme and multiple insecticide resistance in the malaria mosquito Anopheles gambiae. PLoS Genet. 2014;20:3.
Google Scholar
Edi C, Koudou BG, Jones CM, Weetman D, Ranson H. Multiple-insecticide resistance in Anopheles gambiae mosquitoes, Southern Côte d’Ivoire. Emerg Infect Dis. 2012;18:1508–11.
Article
PubMed Central
CAS
PubMed
Google Scholar
David JP, Ismail HM, Chandor-Proust A, Paine MJ. Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth. Philos Trans R Soc Lond B Biol Sci. 2013;368:20120429.
Article
PubMed Central
PubMed
Google Scholar
Müller P, Warr E, Stevenson BJ, Pignatelli PM, Morgan JC, Steven A, et al. Field-caught permethrinresistant Anopheles gambiae overexpress CYP6P3, a P450 that metabolises pyrethroids. PLoS Genet. 2008;4:e1000286. doi:10.00210.1001371/journal.pgen.1000286.
Article
PubMed Central
PubMed
Google Scholar
Djouaka RF, Bakare AA, Coulibaly ON, Akogbeto MC, Ranson H, Hemingway J, Strode C. Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae s.s. from Southern Benin and Nigeria. BMC Genom. 2008;9:538.
Article
Google Scholar
Denholm I, Rowland MW. Tactics for managing pesticide resistance in arthropods: theory and practice. Annu Rev Entomol. 1992;37:91–112.
Article
CAS
PubMed
Google Scholar
Wu H, Kerr K, Cui X, Churchill G: MAANOVA: a software package for the analysis of spotted cDNA microarray experiments. In: The analysis of gene expression data: methods and software. New York: Springer, 2002. p. 313–341.