WHO. World malaria report 2018. Geneva: World Health Organization; 2018. http://www.who.int/iris/handle/10665/275867.
Phyo AP, Ashley EA, Anderson TJC, Bozdech Z, Carrara VI, Sriprawat K, et al. Declining efficacy of artemisinin combination therapy against P. falciparum malaria on the Thai–Myanmar border (2003–2013): the role of parasite genetic factors. Clin Infect Dis. 2016;63:784–91.
Article
CAS
PubMed Central
PubMed
Google Scholar
Fairhurst RM, Dondorp AM. Artemisinin-resistant Plasmodium falciparum malaria. Microbiol Spectr. 2016. https://doi.org/10.1128/microbiolspec.EI10-0013-2016.
Article
PubMed
Google Scholar
Tilley L, Straimer J, Gnädig NF, Ralph SA, Fidock DA. Artemisinin action and resistance in Plasmodium falciparum. Trends Parasitol. 2016;32:682–96.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ouji M, Augereau JM, Paloque L, Benoit-Vical F. Plasmodium falciparum resistance to artemisinin-based combination therapies: a sword of Damocles in the path toward malaria elimination. Parasite. 2018;25:24.
Article
PubMed Central
PubMed
Google Scholar
Nair S, Li X, Arya GA, McDew-White M, Ferrari M, Nosten F, et al. Fitness costs and the rapid spread of kelch13-C580Y substitutions conferring artemisinin resistance. Antimicrob Agents Chemother. 2018;62:e00605–18.
Article
CAS
PubMed Central
PubMed
Google Scholar
WHO. World malaria report 2016. Geneva: World Health Organization; 2016. http://www.who.int/iris/handle/10665/252038.
Karunamoorthi K. Vector control: a cornerstone in the malaria elimination campaign. Clin Microbiol Infect. 2011;17:1608–16.
Article
CAS
PubMed
Google Scholar
Tikar SN, Mendki MJ, Sharma AK, Sukumaran D, Veer V, Prakash S, et al. Resistance status of the malaria vector mosquitoes, Anopheles stephensi and Anopheles subpictus towards adulticides and larvicides in arid and semi-arid areas of India. J Insect Sci. 2011;11:85.
Article
CAS
PubMed Central
PubMed
Google Scholar
Alonso PL, Tanner M. Public health challenges and prospects for malaria control and elimination. Nat Med. 2013;19:150–5.
Article
CAS
PubMed
Google Scholar
Alout H, Labbé P, Chandre F, Cohuet A. malaria vector control still matters despite insecticide resistance. Trends Parasitol. 2017;33:610–8.
Article
PubMed
Google Scholar
Buss DS, Callaghan A. Interaction of pesticides with p-glycoprotein and other ABC proteins: a survey of the possible importance to insecticide, herbicide and fungicide resistance. Pestic Biochem Physiol. 2008;90:141–53.
Article
CAS
Google Scholar
Porretta D, Gargani M, Bellini R, Medici A, Punelli F, Urbanelli S. Defence mechanism against insecticides temephos and diflubenzuron in the mosquito Aedes caspius: the P-glycoprotein efflux pumps. Med Vet Entomol. 2008;22:48–54.
Article
CAS
PubMed
Google Scholar
Figueira-Mansur J, Ferreira-Pereira A, Mansur JF, Franco TA, Alvarenga ES, Sorgine MH, et al. Silencing of P-glycoprotein increases mortality in temephos-treated Aedes aegypti larvae. Insect Mol Biol. 2013;22:648–58.
Article
CAS
PubMed
Google Scholar
Lima EP, Goulart MOF, Rolim-Neto ML. Evaluation of the role of ATP-binding cassette transporter as a defence mechanism against temephos in populations of Aedes aegypti. Mem Inst Oswaldo Cruz. 2014;109:964–6.
Article
PubMed
Google Scholar
Dalla Bona AC, Faitta Chitolina R, Lopes Fermino M, de Castro Poncio L, Weiss A, Pereira Lima JB, et al. Larval application of sodium channel homologous dsRNA restores pyrethroid insecticide susceptibility in a resistant adult mosquito population. Parasit Vectors. 2016;9:397.
Article
Google Scholar
Pignatelli P, Ingham VA, Balabanidou V, Vontas J, Lycett G, Ranson H. The Anopheles gambiae ATP-binding cassette transporter family: phylogenetic analysis and tissue localization provide clues on function and role in insecticide resistance. Insect Mol Biol. 2018;27:110–22.
Article
CAS
PubMed
Google Scholar
Grant DF, Hammock BD. Genetic and molecular evidence for a trans-acting regulatory locus controlling glutathione S-transferase-2 expression in Aedes aegypti. Mol Gen Genet. 1992;234:169–76.
Article
CAS
PubMed
Google Scholar
Ranson H, Rossiter L, Ortelli F, Jensen B, Wang X, Roth CW, et al. Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles gambiae. Biochem J. 2001;359:295–304.
Article
CAS
PubMed Central
PubMed
Google Scholar
Tikar SN, Kumar A, Prasad GB, Prakash S. Temephos-induced resistance in Aedes aegypti and its cross-resistance studies to certain insecticides from India. Parasitol Res. 2009;105:57–63.
Article
CAS
PubMed
Google Scholar
David JP, Strode C, Vontas J, Nikou D, Vaughan A, Pignatelli PM, et al. The Anopheles gambiae detoxification chip: a highly specific microarray to study metabolic-based insecticide resistance in malaria vectors. Proc Natl Acad Sci USA. 2005;102:4080–4.
Article
CAS
PubMed Central
PubMed
Google Scholar
De Marco L, Sassera D, Epis S, Mastrantonio V, Ferrari M, Ricci I, et al. The choreography of the chemical defensome response to insecticide stress: insights into the Anopheles stephensi transcriptome using RNA-Seq. Sci Rep. 2017;7:41312.
Article
PubMed Central
PubMed
Google Scholar
Lumjuan N, Rajatileka S, Changsom D, Wicheer J, Leelapat P, Prapanthadara LA, et al. The role of the Aedes aegypti Epsilon glutathione transferases in conferring resistance to DDT and pyrethroid insecticides. Insect Biochem Mol Biol. 2011;41:203–9.
Article
CAS
PubMed
Google Scholar
Weill M, Berthomieu A, Berticat C, Lutfalla G, Nègre V, Pasteur N, et al. Insecticide resistance: a silent base prediction. Curr Biol. 2004;14:R552–3.
Article
CAS
PubMed
Google Scholar
Epis S, Porretta D, Mastrantonio V, Comandatore F, Sassera D, Rossi P, et al. ABC transporters are involved in defense against permethrin insecticide in the malaria vector Anopheles stephensi. Parasit Vectors. 2014;7:349.
Article
PubMed Central
PubMed
Google Scholar
Epis S, Porretta D, Mastrantonio V, Urbanelli S, Sassera D, De Marco L, et al. Temporal dynamics of the ABC transporter response to insecticide treatment: insights from the malaria vector Anopheles stephensi. Sci Rep. 2014;4:7435.
Article
CAS
PubMed Central
PubMed
Google Scholar
Porretta D, Epis S, Mastrantonio V, Ferrari M, Bellini R, Favia G, et al. How heterogeneous is the involvement of ABC transporters against insecticides? Acta Trop. 2016;157:131–5.
Article
CAS
PubMed
Google Scholar
Mastrantonio V, Ferrari M, Epis S, Negri A, Scucciamarra G, Montagna M, et al. Gene expression modulation of ABC transporter genes in response to permethrin in adults of the mosquito malaria vector Anopheles stephensi. Acta Trop. 2017;171:37–43.
Article
CAS
PubMed
Google Scholar
Mastrantonio V, Ferrari M, Negri A, Sturmo T, Favia G, Porretta D, et al. Insecticide exposure triggers a modulated expression of abc transporter genes in larvae of Anopheles gambiae s.s. Insects. 2019;10:66.
Article
PubMed Central
Google Scholar
Zhang X, Zhang J, Zhu KY. Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Mol Biol. 2010;19:683–93.
Article
PubMed
Google Scholar
Singh AD, Wong S, Ryan CP, Whyard S. Oral delivery of double-stranded RNA in larvae of the yellow fever mosquito, Aedes aegypti: implications for pest mosquito control. J Insect Sci. 2013;13:69.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ingham VA, Jones CM, Pignatelli P, Balabanidou V, Vontas J, Wagstaff SC, et al. Dissecting the organ specificity of insecticide resistance candidate genes in Anopheles gambiae: known and novel candidate genes. BMC Genomics. 2014;15:1018.
Article
PubMed Central
PubMed
Google Scholar
Kumar P, Pandit SS, Steppuhn A, Baldwin IT. Natural history-driven, plant-mediated RNAi-based study reveals CYP6B46′s role in a nicotine-mediated antipredator herbivore defense. Proc Natl Acad Sci USA. 2014;111:1245–52.
Article
CAS
PubMed
Google Scholar
Whyard S, Erdelyan CN, Partridge AL, Singh AD, Beebe NW, Capina R. Silencing the buzz: a new approach to population suppression of mosquitoes by feeding larvae double-stranded RNAs. Parasit Vectors. 2015;8:96.
Article
PubMed Central
PubMed
Google Scholar
Mysore K, Hapairai LK, Sun L, Harper EI, Chen Y, Eggleson KK, et al. Yeast interfering RNA larvicides targeting neural genes induce high rates of Anopheles larval mortality. Malar J. 2017;16:461.
Article
PubMed Central
PubMed
Google Scholar
Fillinger U, Lindsay SW. Larval source management for malaria control in Africa: myths and reality. Malar J. 2011;10:353.
Article
PubMed Central
PubMed
Google Scholar
WHO. Larval source management: a supplementary malaria vector control measure: an operational manual. World Health Organization; 2013. http://www.who.int/iris/handle/10665/85379.
Summerton J, Weller D. Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev. 1997;7:187–95.
Article
CAS
PubMed
Google Scholar
Summerton J. Morpholino, siRNA, and S-DNA compared: impact of structure and mechanism ofaction on off-target effects and sequence specificity. Curr Top Med Chem. 2007;7:650–1.
Article
Google Scholar
Luo Y, Wang X, Wang X, Yu D, Chen B, Kang L. Differential responses of migratory locusts tosystemic RNA interference via double-stranded RNA injection and feeding. Insect Mol Biol. 2013;22:574–83.
Article
CAS
PubMed
Google Scholar
Pietri JE, Cheung KW, Luckhart S. Knockdown of mitogen-activated protein kinase (MAPK) signalling in the midgut of Anopheles stephensi mosquitoes using antisense morpholinos. Insect Mol Biol. 2014;23:558–65.
Article
CAS
PubMed Central
PubMed
Google Scholar
Moulton JD. Guide for morpholino users: toward therapeutics. J Drug Discov Dev Deliv. 2016;3:1023.
Google Scholar
Layden MJ, Rottinger E, Wolenski FS, Gilmore TD, Martindale MQ. Microinjection of mRNA or morpholinos for reverse genetic analysis in the starlet sea anemone, Nematostella vectensis. Nat Protoc. 2013;8:924–34.
Article
PubMed Central
PubMed
Google Scholar
Melvin VS, Feng W, Hernandez-Lagunas L, Artinger KB, Williams T. A Morpholino-based screen to identify novel genes involved in craniofacial morphogenesis. Dev Dyn. 2013;242:817–31.
Article
CAS
PubMed Central
PubMed
Google Scholar
Arora V, Knapp DC, Reddy MT, Weller DD, Iversen PL. Bioavailability and efficacy of antisense morpholino oligomers targeted to c-myc and cytochrome P-450 3A2 following oral administration in rats. J Pharm Sci. 2002;91:1009–18.
Article
CAS
PubMed
Google Scholar
Weidinger G, Stebler J, Slanchev K, Dumstrei K, Wise C, Lovell-Badge R, et al. dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival. Curr Biol. 2003;13:1429–34.
Article
CAS
PubMed
Google Scholar
Slanchev K, Stebler J, de la Cueva-Méndez G, Raz E. Development without germ cells: the role of the germ line in zebrafish sex differentiation. Proc Natl Acad Sci USA. 2005;102:4074–9.
Article
CAS
PubMed Central
PubMed
Google Scholar
WHO. Guidelines for laboratory and field testing of mosquito larvicides Document WHO/CDS/WHOPES/GCDPP/13. Geneva: World Health Organization; 2005.
Google Scholar
Capone A, Ricci I, Damiani C, Mosca M, Rossi P, Scuppa P, et al. Interactions between Asaia, Plasmodium and Anopheles: new insights into mosquito symbiosis and implications in malaria symbiotic control. Parasit Vectors. 2013;6:182.
Article
PubMed Central
PubMed
Google Scholar
Yamamoto DS, Sumitani M, Kasashima K, Sezutsu H, Matsuoka H. Inhibition of malaria infection in transgenic anopheline mosquitoes lacking salivary gland cells. PLoS Pathog. 2016;12:e1005872.
Article
PubMed Central
PubMed
Google Scholar
Morcos PA, Li Y, Jiang S. Vivo-Morpholinos: a non-peptide transporter delivers Morpholinos into a wide array of mouse tissues. Biotechniques. 2008;45:613–4.
Article
CAS
PubMed
Google Scholar
Li T, Liu L, Zhang L, Liu N. Role of G-protein-coupled receptor-related genes in insecticide resistance of the mosquito, Culex quinquefasciatus. Sci Rep. 2014;4:6474.
Article
CAS
PubMed Central
PubMed
Google Scholar
Li T, Cao C, Yang T, Zhang L, He L, Xi Z, et al. A G-protein-coupled receptor regulation pathway in cytochrome P450-mediated permethrin-resistance in mosquitoes, Culex quinquefasciatus. Sci Rep. 2015;5:17772.
Article
CAS
PubMed Central
PubMed
Google Scholar
Guo Z, Kang S, Zhu X, Xia J, Wu Q, Wang S, et al. The novel ABC transporter ABCH1 is a potential target for RNAi-based insect pest control and resistance management. Sci Rep. 2015;5:13728.
Article
PubMed Central
PubMed
Google Scholar
Huvenne H, Smagghe G. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J Insect Physiol. 2010;56:227–35.
Article
CAS
PubMed
Google Scholar
Whangbo JS, Hunter CP. Environmental RNA interference. Trends Genet. 2008;24:297–305.
Article
CAS
PubMed
Google Scholar
Feinberg EH, Hunter CP. Transport of dsRNA into cells by the transmembrane protein SID-1. Science. 2003;301:1545–7.
Article
CAS
PubMed
Google Scholar
Winston WM, Sutherlin M, Wright AJ, Feinberg EH, Hunter CP. Caenorhabditis elegans SID-2 is required for environmental RNA interference. Proc Natl Acad Sci USA. 2007;104:10565–70.
Article
CAS
PubMed Central
PubMed
Google Scholar
Tomoyasu Y, Miller SC, Tomita S, Schoppmeier M, Grossmann D, Bucher G. Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biol. 2008;9:R10.
Article
PubMed Central
PubMed
Google Scholar
Pillai AB, Nagarajan U, Mitra A, Krishnan U, Rajendran S, Hoti SL, et al. RNA interference in mosquito: understanding immune responses, double-stranded RNA delivery systems and potential applications in vector control. Insect Mol Biol. 2017;26:127–39.
Article
Google Scholar
Phanse Y, Dunphy BM, Perry JL, Airs PM, Paquette CC, Carlson JO, et al. Biodistribution and toxicity studies of PRINT hydrogel nanoparticles in mosquito larvae and cells. PLoS Negl Trop Dis. 2015;9:e0003735.
Article
PubMed Central
PubMed
Google Scholar
Araujo RN, Santos A, Pinto FS, Gontijo NF, Lehane MJ, Pereira MH. RNA interference of the salivary gland nitrophorin 2 in the triatomine bug Rhodnius prolixus (Hemiptera: Reduviidae) by dsRNA ingestion or injection. Insect Biochem Mol Biol. 2006;36:683–93.
Article
CAS
PubMed Central
PubMed
Google Scholar
Joga MR, Zotti MJ, Smagghe G, Christiaens O. RNAi efficiency, systemic properties, and novel delivery methods for pest insect control: what we know so far. Front Physiol. 2016;7:553.
Article
PubMed Central
PubMed
Google Scholar
Airs PM, Bartholomay LC. RNA Interference for mosquito and mosquito-borne disease control. Insects. 2017;5:8.
Google Scholar
Fischer JR, Zapata F, Dubelman S, Mueller GM, Uffman JP, Jiang C, et al. Aquatic fate of a double-stranded RNA in a sediment-water system following an over-water application. Environ Toxicol Chem. 2017;36:727–34.
Article
CAS
PubMed
Google Scholar
Cancino-Rodezno A, Alexander C, Villaseñor R, Pacheco S, Porta H, Pauchet Y, et al. The mitogen-activated protein kinase p38 pathway is involved in insect defense against Cry toxins from Bacillus thuringiensis. Insect Biochem Mol Biol. 2010;40:58–63.
Article
CAS
PubMed
Google Scholar
Rodríguez-Almazán C, Reyes EZ, Zúñiga-Navarrete F, Muñoz-Garay C, Gómez I, Evans AM, et al. Cadherin binding is not a limiting step for Bacillus thuringiensis subsp. israelensis Cry4Ba toxicity to Aedes aegypti larvae. Biochem J. 2012;443:711–7.
Article
PubMed
Google Scholar
Dass CR, Choong PF. Chitosan-mediated orally delivered nucleic acids: a gutful of gene therapy. J Drug Target. 2008;16:257–61.
Article
CAS
PubMed
Google Scholar
Zhang X, Mysore K, Flannery E, Michel K, Severson DW, Zhu KY, Duman-Scheel M. Chitosan/interfering RNA nanoparticle mediated gene silencing in disease vector mosquito larvae. J Vis Exp. 2015. https://doi.org/10.3791/52523.
Article
PubMed
PubMed Central
Google Scholar
Jeon SJ, Oh M, Yeo WS, Galvão KN, Jeong KC. Underlying mechanism of antimicrobial activity of chitosan microparticles and implications for the treatment of infectious diseases. PLoS ONE. 2014;9:e92723.
Article
PubMed Central
PubMed
Google Scholar
Stewart ZP, Oxborough RM, Tungu PK, Kirby MJ, Rowland MW, Irish SR. Indoor application of attractive toxic sugar bait (ATSB) in combination with mosquito nets for control of pyrethroid-resistant mosquitoes. PLoS ONE. 2013;8:e84168.
Article
PubMed Central
PubMed
Google Scholar
Van Ekert E, Powell CA, Shatters RG Jr, Borovsky D. Control of larval and egg development in Aedes aegypti with RNA interference against juvenile hormone acid methyl transferase. J Insect Physiol. 2014;70:143–50.
Article
PubMed
Google Scholar
Zhang Y, Zhang G, Li Y, Hu Y. Probing the binding of insecticide permethrin to calf thymus DNA by spectroscopic techniques merging with chemometrics method. J Agric Food Chem. 2013;61:2638–47.
Article
CAS
PubMed
Google Scholar
Kasai S, Weerasinghe IS, Shono T. P450 Monooxygenases are an important mechanism of permethrin resistance in Culex quinquefasciatus say larvae. Arch Insect Biochem Physiol. 1998;37:47–56.
Article
CAS
Google Scholar
Hemingway J, Ranson H. Insecticide resistance in insect vectors of human disease. Ann Rev Entomol. 2000;45:371–91.
Article
CAS
Google Scholar
Kasai S, Shono T, Komagata O, Tsuda Y, Kobayashi M, Motoki M, et al. Insecticide resistance in potential vector mosquitoes for West Nile virus in Japan. J Med Entomol. 2007;44:822–9.
Article
CAS
PubMed
Google Scholar
Liu N. Insecticide resistance in mosquitoes: impact, mechanisms, and research directions. Annu Rev Entomol. 2015;60:537–59.
Article
CAS
PubMed
Google Scholar