Frischknecht F, Matuschewski K. Plasmodium sporozoite biology. Cold Spring Harb Perspect Med. 2017;7: a025478.
Article
PubMed
PubMed Central
CAS
Google Scholar
Orfano AS, Nacif-Pimenta R, Duarte APM, Villegas LM, Rodrigues NB, Pinto LC, et al. Species-specific escape of Plasmodium sporozoites from oocysts of avian, rodent, and human malarial parasites. Malar J. 2016;15:394.
Article
PubMed
PubMed Central
CAS
Google Scholar
Klug D, Frischknecht F. Motility precedes egress of malaria parasites from oocysts. Elife. 2017;6: e19157.
Article
PubMed
PubMed Central
Google Scholar
Akaki M, Dvorak JA. A chemotactic response facilitates mosquito salivary gland infection by malaria sporozoites. J Exp Biol. 2005;208:3211–8.
Article
PubMed
Google Scholar
Frischknecht F, Martin B, Thiery I, Bourgouin C, Menard R. Using green fluorescent malaria parasites to screen for permissive vector mosquitoes. Malar J. 2006;5:23.
Article
PubMed
PubMed Central
Google Scholar
Douglas RG, Amino R, Sinnis P, Frischknecht F. Active migration and passive transport of malaria parasites. Trends Parasitol. 2015;31:357–62.
Article
PubMed
Google Scholar
Sterling CR, Aikawa M, Vanderberg JP. The passage of Plasmodium berghei sporozoites through the salivary glands of Anopheles stephensi: an electron microscope study. J Parasitol. 1973;59:593–605.
Article
CAS
PubMed
Google Scholar
Pimenta PF, Touray M, Miller L. The journey of malaria sporozoites in the mosquito salivary gland. J Eukaryot Microbiol. 1994;41:608–24.
Article
CAS
PubMed
Google Scholar
Frischknecht F, Baldacci P, Martin B, Zimmer C, Thiberge S, Olivo-Marin JC, et al. Imaging movement of malaria parasites during transmission by Anopheles mosquitoes. Cell Microbiol. 2004;6:687–94.
Article
CAS
PubMed
Google Scholar
Beier JC, Davis JR, Vaughan JA, Noden BH, Beier MS. Quantitation of Plasmodium falciparum sporozoites transmitted in vitro by experimentally infected Anopheles gambiae and Anopheles stephensi. Am J Trop Med Hyg. 1991;44:564–70.
Article
CAS
PubMed
Google Scholar
Beier JC, Onynago FK, Koros JK, Ramadhan M, Ogwang R, Wirtz RA, et al. Quantitation of malaria sporozoites transmitted in vitro during salivation by wild Afrotropical Anopheles. Med Vet Entomol. 1991;5:71–9.
Article
CAS
PubMed
Google Scholar
Medica DL, Sinnis P. Quantitative dynamics of Plasmodium yoelii sporozoite transmission by infected anopheline mosquitoes. Infect Immun. 2005;73:4363–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamauchi LM, Coppi A, Snounou G, Sinnis P. Plasmodium sporozoites trickle out of the injection site. Cell Microbiol. 2007;9:1215–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frischknecht F. The skin as interface in the transmission of arthropod-borne pathogens. Cell Microbiol. 2007;9:1630–40.
Article
CAS
PubMed
Google Scholar
Sidjanski SP, Vanderberg JP, Sinnis P. Anopheles stephensi salivary glands bear receptors for region I of the circumsporozoite protein of Plasmodium falciparum. Mol Biochem Parasitol. 1997;90:33–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vanderberg JP, Frevert U. Intravital microscopy demonstrating antibody-mediated immobilisation of Plasmodium berghei sporozoites injected into skin by mosquitoes. Int J Parasitol. 2004;34:991–6.
Article
PubMed
Google Scholar
Amino R, Ménard R, Frischknecht F. In vivo imaging of malaria parasites—recent advances and future directions. Curr Opin Microbiol. 2005;8:407–14.
Article
CAS
PubMed
Google Scholar
Amino R, Thiberge S, Martin B, Celli S, Shorte S, Frischknecht F, et al. Quantitative imaging of Plasmodium transmission from mosquito to mammal. Nat Med. 2006;12:220–4.
Article
CAS
PubMed
Google Scholar
Ménard R, Tavares J, Cockburn I, Markus M, Zavala F, Amino R. Looking under the skin: the first steps in malarial infection and immunity. Nat Rev Microbiol. 2013;11:701–12.
Article
PubMed
CAS
Google Scholar
Aliprandini E, Tavares J, Panatieri RH, Thiberge S, Yamamoto MM, Silvie O, et al. Cytotoxic anti-circumsporozoite antibodies target malaria sporozoites in the host skin. Nat Microbiol. 2018;3:1224–33.
Article
CAS
PubMed
Google Scholar
Hopp CS, Kanatani S, Archer NK, Miller RJ, Liu H, Chiou KK, et al. Comparative intravital imaging of human and rodent malaria sporozoites reveals the skin is not a species-specific barrier. EMBO Mol Med. 2021;13: e11796.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frevert U, Späth GF, Yee H. Exoerythrocytic development of Plasmodium gallinaceum in the White Leghorn chicken. Int J Parasitol. 2008;38:655–72.
Article
CAS
PubMed
Google Scholar
Hopp CS, Chiou K, Ragheb DRT, Salman AM, Khan SM, Liu AJ, et al. Longitudinal analysis of Plasmodium sporozoite motility in the dermis reveals component of blood vessel recognition. Elife. 2015;4: e07789.
Article
PubMed Central
Google Scholar
Amino R, Giovannini D, Thiberge S, Gueirard P, Boisson B, Dubremetz JF, et al. Host cell traversal is important for progression of the malaria parasite through the dermis to the liver. Cell Host Microbe. 2008;3:88–96.
Article
CAS
PubMed
Google Scholar
Loubens M, Vincensini L, Fernandes P, Briquet S, Marinach C, Silvie O. Plasmodium sporozoites on the move: switching from cell traversal to productive invasion of hepatocytes. Mol Microbiol. 2021;115:870–81.
Article
CAS
PubMed
Google Scholar
Coppi A, Tewari R, Bishop JR, Bennett BL, Lawrence R, Esko JD, et al. Heparan sulfate proteoglycans provide a signal to Plasmodium sporozoites to stop migrating and productively invade host cells. Cell Host Microbe. 2007;2:316–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ripp J, Kehrer J, Smyrnakou X, Tisch N, Tavares J, Amino R, et al. Malaria parasites differentially sense environmental elasticity during transmission. EMBO Mol Med. 2021;13: e13933.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tavares J, Formaglio P, Thiberge S, Mordelet E, Van Rooijen N, Medvinsky A, et al. Role of host cell traversal by the malaria sporozoite during liver infection. J Exp Med. 2013;210:905–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prudêncio M, Rodriguez A, Mota MM. The silent path to thousands of merozoites: the Plasmodium liver stage. Nat Rev Microbiol. 2006;4:849–56.
Article
PubMed
CAS
Google Scholar
Sultan AA, Thathy V, Frevert U, Robson KJH, Crisanti A, Nussenzweig V, et al. TRAP is necessary for gliding motility and infectivity of Plasmodium sporozoites. Cell. 1997;90:511–22.
Article
CAS
PubMed
Google Scholar
Klug D, Goellner S, Kehrer J, Sattler J, Strauss L, Singer M, et al. Evolutionarily distant I domains can functionally replace the essential ligandbinding domain of Plasmodium trap. Elife. 2020;9: e57572.
Article
CAS
PubMed
PubMed Central
Google Scholar
Münter S, Sabass B, Selhuber-Unkel C, Kudryashev M, Hegge S, Engel U, et al. Plasmodium sporozoite motility is modulated by the Turnover of Discrete Adhesion Sites. Cell Host Microbe. 2009;6:551–62.
Article
PubMed
CAS
Google Scholar
Meissner M, Ferguson DJP, Frischknecht F. Invasion factors of apicomplexan parasites: essential or redundant? Curr Opin Microbiol. 2013;16:438–44.
Article
PubMed
Google Scholar
Montagna GN, Matuschewksi K, Buscaglia CA. Plasmodium sporozoite motility: an update. Front Biosci. 2012;17:726–44.
Article
CAS
Google Scholar
Heintzelman MB. Gliding motility in apicomplexan parasites. Semin Cell Dev Biol. 2015;46:135–42.
Article
PubMed
Google Scholar
Tardieux I, Baum J. Reassessing the mechanics of parasite motility and host-cell invasion. J Cell Biol. 2016;214:507–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kappe S, Bruderer T, Gantt S, Fujioka H, Nussenzweig V, Ménard R. Conservation of a gliding motility and cell invasion machinery in Apicomplexan parasites. J Cell Biol. 1999;147:937–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heiss K, Nie H, Kumar S, Daly TM, Bergman LW, Matuschewski K. Functional characterization of a redundant Plasmodium TRAP family invasin, TRAP-like protein, by aldolase binding and a genetic complementation test. Eukaryot Cell. 2008;7:1062–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moreira CK, Templeton TJ, Lavazec C, Hayward RE, Hobbs CV, Kroeze H, et al. The Plasmodium TRAP/MIC2 family member, TRAP-like protein (TLP), is involved in tissue traversal by sporozoites. Cell Microbiol. 2008;10:1505–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steinbuechel M, Matuschewski K. Role for the Plasmodium sporozoite-specific transmembrane protein S6 in parasite motility and efficient malaria transmission. Cell Microbiol. 2009;11:279–88.
Article
CAS
PubMed
Google Scholar
Combe A, Moreira CK, Ackerman S, Thiberge S, Templeton TJ, Ménard R. TREP, a novel protein necessary for gliding motility of the malaria sporozoite. Int J Parasitol. 2009;39:489–96.
Article
CAS
PubMed
Google Scholar
Hellmann JK, Münter S, Kudryashev M, Schulz S, Heiss K, Müller AK, et al. Environmental constraints guide migration of malaria parasites during transmission. PLoS Pathog. 2011;7: e1002080.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hegge S, Uhrig K, Streichfuss M, Kynast-Wolf G, Matuschewski K, Spatz JP, et al. Direct manipulation of malaria parasites with optical tweezers reveals distinct functions of Plasmodium surface proteins. ACS Nano. 2012;6:4648–62.
Article
CAS
PubMed
Google Scholar
Quadt KA, Streichfuss M, Moreau CA, Spatz JP, Frischknecht F. Coupling of retrograde flow to force production during malaria parasite migration. ACS Nano. 2016;10:2091–102.
Article
CAS
PubMed
Google Scholar
Hellmann JK, Perschmann N, Spatz JP, Frischknecht F. Tunable substrates unveil chemical complementation of a genetic cell migration defect. Adv Healthc Mater. 2013;2:1162–9.
Article
CAS
PubMed
Google Scholar
Deligianni E, Morgan RN, Bertuccini L, Kooij TWA, Laforge A, Nahar C, et al. Critical role for a stage-specific actin in male exflagellation of the malaria parasite. Cell Microbiol. 2011;13:1714–30.
Article
CAS
PubMed
Google Scholar
Kooij TWA, Carlton JM, Bidwell SL, Hall N, Ramesar J, Janse CJ, et al. A Plasmodium whole-genome synteny map: Indels and synteny breakpoints as foci for species-specific genes. PLoS Pathog. 2005;1: e0010044.
Article
CAS
Google Scholar
Beyer K. Collective motion and adhesin dynamics of Plasmodium sporozoites. Thesis, University of Heidelberg. 2017. https://archiv.ub.uni-heidelberg.de/volltextserver/23561/1/Thesis_KonradBeyer.pdf.
Janse CJ, Ramesar J, Waters AP. High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malaria parasite Plasmodium berghei. Nat Protoc. 2006;1:346–56.
Article
CAS
PubMed
Google Scholar
Singer M, Marshall J, Heiss K, Mair GR, Grimm D, Mueller AK, et al. Zinc finger nuclease-based double-strand breaks attenuate malaria parasites and reveal rare microhomology-mediated end joining. Genome Biol. 2015;16:249.
Article
PubMed
PubMed Central
CAS
Google Scholar
Braks JAM, Franke-Fayard B, Kroeze H, Janse CJ, Waters AP. Development and application of a positive—negative selectable marker system for use in reverse genetics in Plasmodium. Nucleic Acids Res. 2006;34: e39.
Article
PubMed
PubMed Central
Google Scholar
Pfander C, Anar B, Schwach F, Otto TD, Brochet M, Volkmann K, et al. A scalable pipeline for highly effective genetic modification of a malaria parasite. Nat Methods. 2011;8:1078–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gomes AR, Bushell E, Schwach F, Girling G, Anar B, Quail MA, et al. A genome-scale vector resource enables high-throughput reverse genetic screening in a malaria parasite. Cell Host Microbe. 2015;17:404–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwach F, Bushell E, Gomes AR, Anar B, Girling G, Herd C, et al. PlasmoGEM, a database supporting a community resource for large-scale experimental genetics in malaria parasites. Nucleic Acids Res. 2015;43:D1176–82.
Article
CAS
PubMed
Google Scholar
Orr RY, Philip N, Waters AP. Improved negative selection protocol for Plasmodium berghei in the rodent malarial model. Malar J. 2012;11:103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schindelin J, Rueden CT, Hiner MC, Eliceiri KW. The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev. 2015;82:518–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bushell E, Gomes AR, Sanderson T, Anar B, Girling G, Herd C, et al. Functional profiling of a Plasmodium genome reveals an abundance of essential genes. Cell. 2017;170:260-72.e8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vanderberg JP. Studies on the motility of Plasmodium sporozoites. J Protozool. 1974;21:527–37.
Article
CAS
PubMed
Google Scholar
Hegge S, Kudryashev M, Barniol L, Frischknecht F. Key factors regulating Plasmodium berghei sporozoite survival and transformation revealed by an automated visual assay. FASEB J. 2010;24:5003–12.
Article
CAS
PubMed
Google Scholar
Aleshnick M, Ganusov VV, Nasir G, Yenokyan G, Sinnis P. Experimental determination of the force of malaria infection reveals a non-linear relationship to mosquito sporozoite loads. PLoS Pathog. 2020;16: e1008181.
Article
CAS
PubMed
PubMed Central
Google Scholar
Douradinha B, Augustijn KD, Moore SG, Ramesar J, Mota MM, Waters AP, et al. Plasmodium cysteine repeat modular proteins 3 and 4 are essential for malaria parasite transmission from the mosquito to the host. Malar J. 2011;10:71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ménard R, Sultan AA, Cortest C, Ahszulert R, van Dijk MR, Janse CJ, et al. Circumsporozoite protein is required for development of malaria sporozoites in mosquitoes. Nature. 1997;385:336–40.
Article
PubMed
Google Scholar
Kariu T, Yuda M, Yano K, Chinzei Y. MAEBL is essential for malarial sporozoite infection of the mosquito salivary gland. J Exp Med. 2002;195:1317–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saenz FE, Balu B, Smith J, Mendonca SR, Adams JH. The transmembrane isoform of Plasmodium falciparum MAEBL is essential for the invasion of Anopheles salivary glands. PLoS ONE. 2008;3: e0002287.
Google Scholar
Yang ASP, Lopaticki S, O’Neill MT, Erickson SM, Douglas DN, Kneteman NM, et al. AMA1 and MAEBL are important for Plasmodium falciparum sporozoite infection of the liver. Cell Microbiol. 2017;19: e12745.
Article
CAS
Google Scholar
Bantuchai S, Nozaki M, Thongkukiatkul A, Lorsuwannarat N, Tachibana M, Baba M, et al. Rhoptry neck protein 11 has crucial roles during malaria parasite sporozoite invasion of salivary glands and hepatocytes. Int J Parasitol. 2019;49:725–35.
Article
CAS
PubMed
Google Scholar
Nozaki M, Baba M, Tachibana M, Tokunaga N, Torii M, Ishino T. Detection of the Rhoptry Neck Protein Complex in Plasmodium sporozoites and its contribution to sporozoite invasion of salivary glands. mSphere. 2020;5: e00325-20.
Article
PubMed
PubMed Central
Google Scholar
Santos JM, Egarter S, Zuzarte-Luís V, Kumar H, Moreau CA, Kehrer J, et al. Malaria parasite LIMP protein regulates sporozoite gliding motility and infectivity in mosquito and mammalian hosts. Elife. 2017;6: e24109.
Article
PubMed
PubMed Central
Google Scholar
Steel RWJ, Pei Y, Camargo N, Kaushansky A, Dankwa DA, Martinson T, et al. Plasmodium yoelii S4/CelTOS is important for sporozoite gliding motility and cell traversal. Cell Microbiol. 2018;20: e12817.
Article
CAS
Google Scholar