Ito M, Kobayashi K, Nakahata T: NOD/Shi-scid IL2rgamma(null) (NOG) mice more appropriate for humanized mouse models. Current Top Microbiol Immunol. 2008, 324: 53-76. full_text.
CAS
Google Scholar
Tsuji M, Ishihara C, Arai S, Hiratai R, Azuma I: Establishment of a SCID mouse model having circulating human red blood cells and a possible growth of Plasmodium falciparum in the mouse. Vaccine. 1995, 13: 1389-1392. 10.1016/0264-410X(95)00081-B.
Article
CAS
PubMed
Google Scholar
Badell E, Pasquetto V, Van Rooijen N, Druilhe P: A mouse model for human malaria erythrocytic stages. Parasitol Today. 1995, 11: 235-237. 10.1016/0169-4758(95)80088-3.
Article
Google Scholar
Lopez AF, Strath M, Sanderson CJ: Differentiation antigens on mouse eosinophils and neutrophils identified by monoclonal antibodies. Br J Haematol. 1984, 57: 489-494. 10.1111/j.1365-2141.1984.tb02923.x.
Article
CAS
PubMed
Google Scholar
van Rooijen N, van Kesteren-Hendrikx E: "In vivo" depletion of macrophages by liposome-mediated "suicide". Methods Enzymol. 2003, 373: 3-16. full_text.
Article
CAS
PubMed
Google Scholar
Druilhe P, Spertini F, Soesoe D, Corradin G, Mejia P, Singh S, Audran R, Bouzidi A, Oeuvray C, Roussilhon C: A malaria vaccine that elicits in humans antibodies able to kill Plasmodium falciparum. PLoS Medicine. 2005, 2: e344-10.1371/journal.pmed.0020344.
Article
PubMed Central
PubMed
Google Scholar
Singh S, Soe S, Mejia JP, Roussilhon C, Theisen M, Corradin G, Druilhe P: Identification of a conserved region of Plasmodium falciparum MSP3 targeted by biologically active antibodies to improve vaccine design. J Infect Dis. 2004, 190: 1010-1018. 10.1086/423208.
Article
CAS
PubMed
Google Scholar
Moreno A, Badell E, Van Rooijen N, Druilhe P: Human malaria in immunocompromised mice: new in vivo model for chemotherapy studies. Antimicrob Agents Chemother. 2001, 45: 1847-1853. 10.1128/AAC.45.6.1847-1853.2001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chimma P, Roussilhon C, Sratongno P, Ruangveerayuth R, Pattanapanyasat K, Perignon JL, Roberts DJ, Druilhe P: A distinct peripheral blood monocyte phenotype is associated with parasite inhibitory activity in acute uncomplicated Plasmodium falciparum malaria. PLoS Pathogens. 2009, 5: e1000631-10.1371/journal.ppat.1000631.
Article
PubMed Central
PubMed
Google Scholar
Rowe AW, Eyster E, Kellner A: Liquid nitrogen preservation of red blood cells for transfusion; a low glycerol-rapid freeze procedure. Cryobiology. 1968, 5: 119-128. 10.1016/S0011-2240(68)80154-3.
Article
CAS
PubMed
Google Scholar
Badell E, Oeuvray C, Moreno A, Soe S, van Rooijen N, Bouzidi A, Druilhe P: Human malaria in immunocompromised mice: an in vivo model to study defense mechanisms against Plasmodium falciparum. J Exp Med. 2000, 192: 1653-1660. 10.1084/jem.192.11.1653.
Article
PubMed Central
CAS
PubMed
Google Scholar
Moreno A, Ferrer E, Arahuetes S, Eguiluz C, Van Rooijen N, Benito A: The course of infections and pathology in immunomodulated NOD/LtSz-SCID mice inoculated with Plasmodium falciparum laboratory lines and clinical isolates. Int J Parasitol. 2006, 36: 361-369. 10.1016/j.ijpara.2005.10.012.
Article
CAS
PubMed
Google Scholar
Santini SM, Rizza P, Logozzi MA, Sestili P, Gherardi G, Lande R, Lapenta C, Belardelli F, Fais S: The SCID mouse reaction to human peripheral blood mononuclear leukocyte engraftment. Neutrophil recruitment induced expression of a wide spectrum of murine cytokines and mouse leukopoiesis, including thymic differentiation. Transplantation. 1995, 60: 1306-1314.
Article
CAS
PubMed
Google Scholar
Santini SM, Spada M, Parlato S, Logozzi M, Lapenta C, Proietti E, Belardelli F, Fais S: Treatment of severe combined immunodeficiency mice with anti-murine granulocyte monoclonal antibody improves human leukocyte xenotransplantation. Transplantation. 1998, 65: 416-420. 10.1097/00007890-199802150-00022.
Article
CAS
PubMed
Google Scholar
Kirkiles-Smith NC, Harding MJ, Shepherd BR, Fader SA, Yi T, Wang Y, McNiff JM, Snyder EL, Lorber MI, Tellides G, Pober JS: Development of a humanized mouse model to study the role of macrophages in allograft injury. Transplantation. 2009, 87: 189-197. 10.1097/TP.0b013e318192e05d.
Article
PubMed Central
CAS
PubMed
Google Scholar
Takeuchi D, Jones VC, Kobayashi M, Suzuki F: Cooperative role of macrophages and neutrophils in host Antiprotozoan resistance in mice acutely infected with Cryptosporidium parvum. Infect Immun. 2008, 76: 3657-3663. 10.1128/IAI.00112-08.
Article
PubMed Central
CAS
PubMed
Google Scholar
Watanabe Y, Takahashi T, Okajima A, Shiokawa M, Ishii N, Katano I, Ito R, Ito M, Minegishi M, Minegishi N, Tsuchiya S, Sugamura K: The analysis of the functions of human B and T cells in humanized NOD/shi-scid/gammac(null) (NOG) mice (hu-HSC NOG mice). Int Immunol. 2009, 21: 843-858. 10.1093/intimm/dxp050.
Article
CAS
PubMed
Google Scholar
Moore JM, Kumar N, Shultz LD, Rajan TV: Maintenance of the human malarial parasite, Plasmodium falciparum, in scid mice and transmission of gametocytes to mosquitoes. J Exp Med. 1995, 181: 2265-2270. 10.1084/jem.181.6.2265.
Article
CAS
PubMed
Google Scholar
Courtice FC, Harding J, Steinbeck AW: The removal of free red blood cells from the peritoneal cavity of animals. The Australian Journal of Experimental Biology and Medical Science. 1953, 31: 215-225. 10.1038/icb.1953.26.
Article
CAS
PubMed
Google Scholar
Flessner MF, Parker RJ, Sieber SM: Peritoneal lymphatic uptake of fibrinogen and erythrocytes in the rat. Am J Physiol. 1983, 244: H89-96.
CAS
PubMed
Google Scholar
Angulo-Barturen I, Jimenez-Diaz MB, Mulet T, Rullas J, Herreros E, Ferrer S, Jimenez E, Mendoza A, Regadera J, Rosenthal PJ, Bathurst I, Pompliano DL, Gómez de las Heras F, Gargallo-Viola D: A murine model of falciparum-malaria by in vivo selection of competent strains in non-myelodepleted mice engrafted with human erythrocytes. PLoS ONE. 2008, 3: e2252-10.1371/journal.pone.0002252.
Article
PubMed Central
PubMed
Google Scholar
Clark IA, Chaudhri G: Tumour necrosis factor may contribute to the anaemia of malaria by causing dyserythropoiesis and erythrophagocytosis. Br J Haematol. 1988, 70: 99-103. 10.1111/j.1365-2141.1988.tb02440.x.
Article
CAS
PubMed
Google Scholar
Ishihara C, Tsuji M, Hagiwara K, Hioki K, Arikawa J, Azuma I: Transfusion with xenogeneic erythrocytes into SCID mice and their clearance from the circulation. J Vet Med Sci. 1994, 56: 1149-1154.
Article
CAS
PubMed
Google Scholar
Cadili A, Kneteman N: The role of macrophages in xenograft rejection. Transplantation proceedings. 2008, 40: 3289-3293. 10.1016/j.transproceed.2008.08.125.
Article
CAS
PubMed
Google Scholar
Itescu S, Kwiatkowski P, Artrip JH, Wang SF, Ankersmit J, Minanov OP, Michler RE: Role of natural killer cells, macrophages, and accessory molecule interactions in the rejection of pig-to-primate xenografts beyond the hyperacute period. Human Immunol. 1998, 59: 275-286. 10.1016/S0198-8859(98)00026-3.
Article
CAS
Google Scholar
Lin Y, Vandeputte M, Waer M: Natural killer cell- and macrophage-mediated rejection of concordant xenografts in the absence of T and B cell responses. J Immunol. 1997, 158: 5658-5667.
CAS
PubMed
Google Scholar
Fox A, Koulmanda M, Mandel TE, van Rooijen N, Harrison LC: Evidence that macrophages are required for T-cell infiltration and rejection of fetal pig pancreas xenografts in nonobese diabetic mice. Transplantation. 1998, 66: 1407-1416. 10.1097/00007890-199812150-00002.
Article
CAS
PubMed
Google Scholar
Wu GS, Korsgren O, Zhang JG, Song ZS, Van Rooijen N, Tibell A: Role of macrophages and natural killer cells in the rejection of pig islet xenografts in mice. Transplantation Proc. 2000, 32: 1069-10.1016/S0041-1345(00)01127-1.
Article
CAS
Google Scholar
Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B, McKenna S, Mobraaten L, Rajan TV, Greiner DL: Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol. 1995, 154: 180-191.
CAS
PubMed
Google Scholar
Bosma GC, Custer RP, Bosma MJ: A severe combined immunodeficiency mutation in the mouse. Nature. 1983, 301: 527-530. 10.1038/301527a0.
Article
CAS
PubMed
Google Scholar
Muller E, Schroder C, Schauer R, Sharon N: Binding and phagocytosis of sialidase-treated rat erythrocytes by a mechanism independent of opsonins. Hoppe-Seyler's Zeitschrift fur physiologische Chemie. 1983, 364: 1419-1429.
Article
CAS
PubMed
Google Scholar
Sheiban E, Gershon H: Recognition and sequestration of young and old erythrocytes from young and elderly human donors: in vitro studies. J Lab Clin Med. 1993, 121: 493-501.
CAS
PubMed
Google Scholar
Oldenborg PA, Zheleznyak A, Fang YF, Lagenaur CF, Gresham HD, Lindberg FP: Role of CD47 as a marker of self on red blood cells. Science. 2000, 288: 2051-2054. 10.1126/science.288.5473.2051.
Article
CAS
PubMed
Google Scholar
Wang H, VerHalen J, Madariaga ML, Xiang S, Wang S, Lan P, Oldenborg PA, Sykes M, Yang YG: Attenuation of phagocytosis of xenogeneic cells by manipulating CD47. Blood. 2007, 109: 836-842. 10.1182/blood-2006-04-019794.
Article
PubMed Central
CAS
PubMed
Google Scholar
Patel SN, Lu Z, Ayi K, Serghides L, Gowda DC, Kain KC: Disruption of CD36 impairs cytokine response to Plasmodium falciparum glycosylphosphatidylinositol and confers susceptibility to severe and fatal malaria in vivo. J Immunol. 2007, 178: 3954-3961.
Article
CAS
PubMed
Google Scholar
Patel SN, Serghides L, Smith TG, Febbraio M, Silverstein RL, Kurtz TW, Pravenec M, Kain KC: CD36 mediates the phagocytosis of Plasmodium falciparum- infected erythrocytes by rodent macrophages. J Infect Dis. 2004, 189 (2): 204-213. 10.1086/380764.
Article
CAS
PubMed
Google Scholar
Naik RS, Branch OH, Woods AS, Vijaykumar M, Perkins DJ, Nahlen BL, Lal AA, Cotter RJ, Costello CE, Ockenhouse CF, Davidson EA, Gowda DC: Glycosylphosphatidylinositol anchors of Plasmodium falciparum: molecular characterization and naturally elicited antibody response that may provide immunity to malaria pathogenesis. J Exp Med. 2000, 192: 1563-1576. 10.1084/jem.192.11.1563.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schofield L, Hackett F: Signal transduction in host cells by a glycosylphosphatidylinositol toxin of malaria parasites. J Exp Med. 1993, 177: 145-153. 10.1084/jem.177.1.145.
Article
CAS
PubMed
Google Scholar
Krishnegowda G, Hajjar AM, Zhu J, Douglass EJ, Uematsu S, Akira S, Woods AS, Gowda DC: Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity. J Biol Chem. 2005, 280: 8606-8616. 10.1074/jbc.M413541200.
Article
CAS
PubMed
Google Scholar
Coban C, Ishii KJ, Kawai T, Hemmi H, Sato S, Uematsu S, Yamamoto M, Takeuchi O, Itagaki S, Kumar N, Horii T, Akira S: Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J Exp Med. 2005, 201: 19-25. 10.1084/jem.20041836.
Article
PubMed Central
CAS
PubMed
Google Scholar
Parroche P, Lauw FN, Goutagny N, Latz E, Monks BG, Visintin A, Halmen KA, Lamphier M, Olivier M, Bartholomeu DC, Gazzinelli RT, Golenbock DT: Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc Natl Acad Sci USA. 2007, 104: 1919-1924. 10.1073/pnas.0608745104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tachado SD, Gerold P, McConville MJ, Baldwin T, Quilici D, Schwarz RT, Schofield L: Glycosylphosphatidylinositol toxin of Plasmodium induces nitric oxide synthase expression in macrophages and vascular endothelial cells by a protein tyrosine kinase-dependent and protein kinase C-dependent signaling pathway. J Immunol. 1996, 156: 1897-1907.
CAS
PubMed
Google Scholar
Orengo JM, Leliwa-Sytek A, Evans JE, Evans B, van de Hoef D, Nyako M, Day K, Rodriguez A: Uric acid is a mediator of the Plasmodium falciparum-induced inflammatory response. PLoS One. 2009, 4: e5194-10.1371/journal.pone.0005194.
Article
PubMed Central
PubMed
Google Scholar
Morakote N, Justus DE: Immunosuppression in malaria: effect of hemozoin produced by Plasmodium berghei and Plasmodium falciparum. International Arch Allergy Immunol. 1988, 86: 28-34. 10.1159/000234602.
Article
CAS
Google Scholar
Schwarzer E, Turrini F, Ulliers D, Giribaldi G, Ginsburg H, Arese P: Impairment of macrophage functions after ingestion of Plasmodium falciparum- infected erythrocytes or isolated malarial pigment. J Exp Med. 1992, 176: 1033-1041. 10.1084/jem.176.4.1033.
Article
CAS
PubMed
Google Scholar
Schwarzer E, Skorokhod OA, Barrera V, Arese P: Hemozoin and the human monocyte--a brief review of their interactions. Parassitologia. 2008, 50: 143-145.
CAS
PubMed
Google Scholar
Huy NT, Trang DT, Kariu T, Sasai M, Saida K, Harada S, Kamei K: Leukocyte activation by malarial pigment. Parasitol Int. 2006, 55: 75-81. 10.1016/j.parint.2005.10.003.
Article
CAS
PubMed
Google Scholar
Jaramillo M, Plante I, Ouellet N, Vandal K, Tessier PA, Olivier M: Hemozoin-inducible proinflammatory events in vivo: potential role in malaria infection. J Immunol. 2004, 172: 3101-3110.
Article
CAS
PubMed
Google Scholar
Skorokhod OA, Schwarzer E, Ceretto M, Arese P: Malarial pigment haemozoin, IFN-gamma, TNF-alpha, IL-1beta and LPS do not stimulate expression of inducible nitric oxide synthase and production of nitric oxide in immuno-purified human monocytes. Malar J. 2007, 6: 73-10.1186/1475-2875-6-73.
Article
PubMed Central
PubMed
Google Scholar
Morosan S, Hez-Deroubaix S, Lunel F, Renia L, Giannini C, Van Rooijen N, Battaglia S, Blanc C, Eling W, Sauerwein R, Hannoun L, Belghiti J, Brechot C, Kremsdorf D, Druilhe P: Liver-stage development of Plasmodium falciparum, in a humanized mouse model. J Infect Dis. 2006, 193: 996-1004. 10.1086/500840.
Article
CAS
PubMed
Google Scholar
Jimenez-Diaz MB, Mulet T, Viera S, Gomez V, Garuti H, Ibanez J, Alvarez-Doval A, Shultz LD, Martinez A, Gargallo-Viola D, Angulo-Barturen I: Improved murine model of malaria using P. falciparum competent strains and non-myelodepleted NOD-scid IL2R{gamma}null mice engrafted with human erythrocytes. Antimicrol Agents Chemother. 2009, 53 (10): 4533-4536. 10.1128/AAC.00519-09.
Article
CAS
Google Scholar