WHO. World malaria report 2015. Geneva: World Health Organization; 2015. http://www.who.int/malaria/publications/world-malaria-report-2015/report/en/.
Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shillcutt S, Morel C, Goodman C, Coleman P, Bell D, Whitty CJM, et al. Cost-effectiveness of malaria diagnostic methods in sub-Saharan Africa in an era of combination therapy. Bull World Health Organ. 2008;86:101–10.
Article
PubMed
Google Scholar
Basu S, Modrek S, Bendavid E. Comparing decisions for malaria testing and presumptive treatment: a net health benefit analysis. Med Decis Making. 2014;34:996–1005.
Article
PubMed
Google Scholar
Delavande A. Probabilistic expectations in developing countries. Annu Rev Econ. 2014;6:1–20.
Article
Google Scholar
Lin JT, Juliano JJ, Wongsrichanalai C. Drug-resistant malaria: the era of ACT. Curr Infect Dis Rep. 2010;12:165–73.
Article
PubMed
PubMed Central
Google Scholar
D’Acremont V, Lengeler C, Mshinda H, Mtasiwa D, Tanner M, Genton B. Time To move from presumptive malaria treatment to laboratory-confirmed diagnosis and treatment in African children with fever. PLoS Med. 2009;6:e252.
Article
PubMed
PubMed Central
Google Scholar
Perkins MD, Bell DR. Working without a blindfold: the critical role of diagnostics in malaria control. Malar J. 2008;7:S5.
Article
PubMed
PubMed Central
Google Scholar
Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:411–23.
Article
PubMed
PubMed Central
Google Scholar
White NJ. Antimalarial drug resistance. J Clin Invest. 2004;113:1084–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amexo M, Tolhurst R, Barnish G, Bates I. Malaria misdiagnosis: effects on the poor and vulnerable. Lancet. 2004;364:1896–8.
Article
Google Scholar
World Health Organization. Guidelines for the treatment of malaria. 2nd ed. Geneva: World Health Organization; 2010.
Google Scholar
Odaga J, Sinclair D, Lokong JA, Donegan S, Hopkins H, Garner P. Rapid diagnostic tests versus clinical diagnosis for managing people with fever in malaria endemic settings. Cochrane Database Syst Rev. 2014;4:CD008998.
Google Scholar
Kabaghe AN, Visser BJ, Spijker R, Phiri KS, Grobusch MP, van Vugt M. Health workers’ compliance to rapid diagnostic tests (RDTs) to guide malaria treatment: a systematic review and meta-analysis. Malar J. 2016;15:163.
Article
PubMed
PubMed Central
Google Scholar
Population Services International, ACTwatch. Malaria market trends in Sub-Saharan Africa: 2009–2016. Washington DC: Population Services International and ACTwatch; 2017.
Poyer S, Shewchuk T, Tougher S, Ye Y, The ACT watch Group, Mann AG, et al. Availability and price of malaria rapid diagnostic tests in the public and private health sectors in 2011: results from 10 nationally representative cross-sectional retail surveys. Trop Med Int Health. 2015;20:744–56.
Article
PubMed
Google Scholar
Visser T, Bruxvoort K, Maloney K, Leslie T, Barat LM, Allan R, et al. Introducing malaria rapid diagnostic tests in private medicine retail outlets: a systematic literature review. PLoS ONE. 2017;12:e0173093.
Article
PubMed
PubMed Central
Google Scholar
Ansah EK, Narh-Bana S, Affran-Bonful H, Bart-Plange C, Cundill B, Gyapong M, et al. The impact of providing rapid diagnostic malaria tests on fever management in the private retail sector in Ghana: a cluster randomized trial. BMJ. 2015;350:h1019.
Article
PubMed
PubMed Central
Google Scholar
Mbonye AK, Magnussen P, Lal S, Hansen KS, Cundill B, Chandler C, et al. A cluster randomised trial introducing rapid diagnostic tests into registered drug shops in Uganda: impact on appropriate treatment of malaria. PLoS ONE. 2015;10:e0129545.
Article
PubMed
PubMed Central
Google Scholar
Cohen J, Fink G, Maloney K, Berg K, Jordan M, Svoronos T, et al. Introducing rapid diagnostic tests for malaria to drug shops in Uganda: a cluster-randomized controlled trial. Bull World Health Organ. 2015;93:142–51.
Article
PubMed Central
Google Scholar
Wongsrichanalai C, Barcus MJ, Muth S, Sutamihardja A, Wernsdorfer WH. A Review of malaria diagnostic tools: microscopy and rapid diagnostic test (RDT). Am J Trop Med Hyg. 2007;77:119–27.
PubMed
Google Scholar
Mtove G, Hendriksen IC, Amos B, Mrema H, Mandia V, Manjurano A, et al. Treatment guided by rapid diagnostic tests for malaria in Tanzanian children: safety and alternative bacterial diagnoses. Malar J. 2011;10:290.
Article
PubMed
PubMed Central
Google Scholar
Hansen KS, Lesner TH, Østerdal LP. Optimal price subsidies for appropriate malaria testing and treatment behaviour. Malar J. 2016;15:534.
Article
PubMed
PubMed Central
Google Scholar
Ansah EK, Reynolds J, Akanpigbiam S, Whitty CJ, Chandler CI. “Even if the test result is negative, they should be able to tell us what is wrong with us”: a qualitative study of patient expectations of rapid diagnostic tests for malaria. Malar J. 2013;12:258.
Article
PubMed
PubMed Central
Google Scholar
Cohen J, Cox A, Dickens W, Maloney K, Lam F, Fink G. Determinants of malaria diagnostic uptake in the retail sector: qualitative analysis from focus groups in Uganda. Malar J. 2015;14:89.
Article
PubMed
PubMed Central
Google Scholar
Mbonye AK, Ndyomugyenyi R, Turinde A, Magnussen P, Clarke S, Chandler C. The feasibility of introducing rapid diagnostic tests for malaria in drug shops in Uganda. Malar J. 2010;9:367.
Article
PubMed
PubMed Central
Google Scholar
Laktabai J, Lesser A, Platt A, Maffioli E, Mohanan M, Menya D, et al. Innovative public–private partnership to target subsidised antimalarials: a study protocol for a cluster randomised controlled trial to evaluate a community intervention in Western Kenya. BMJ Open. 2017;7:e013972.
Article
PubMed
PubMed Central
Google Scholar
National Malaria Control Programme (NMCP), Kenya National Bureau of Statistics (KNBS), ICF International. Kenya malaria indicator survey 2015. Nairobi: KNBS; 2016.
Google Scholar
Kioko U, Riley C, Dellicour S, Were V, Ouma P, Gutman J, et al. A cross-sectional study of the availability and price of anti-malarial medicines and malaria rapid diagnostic tests in private sector retail drug outlets in rural Western Kenya, 2013. Malar J. 2016;15:359.
Article
PubMed
PubMed Central
Google Scholar
ACT watch Group, Population Services Kenya (PSK). ACT watch study reference document: Republic of Kenya outlet survey 2014. Washington, DC: PSI; 2014.
Google Scholar
Shah JA, Emina JBO, Eckert E, Ye Y. Prompt access to effective malaria treatment among children under five in sub-Saharan Africa: a multi-country analysis of national household survey data. Malar J. 2015;14:329.
Article
PubMed
PubMed Central
Google Scholar
Vialle-Valentin CE, LeCates RF, Zhang F, Ross-Degnan D. Treatment of febrile illness with artemisinin combination therapy: prevalence and predictors in five African household surveys. J Pharm Policy Pract. 2015;8:1.
Article
PubMed
PubMed Central
Google Scholar
Rutebemberwa E, Kallander K, Tomson G, Peterson S, Pariyo G. Determinants of delay in care-seeking for febrile children in eastern Uganda. Trop Med Int Health. 2009;14:472–9.
Article
PubMed
Google Scholar
Littrell M, Gatakaa H, Evance I, Poyer S, Njogu J, Solomon T, et al. Monitoring fever treatment behaviour and equitable access to effective medicines in the context of initiatives to improve ACT access: baseline results and implications for programming in six African countries. Malar J. 2011;10:327.
Article
PubMed
PubMed Central
Google Scholar
Chuma J, Okungu V, Molyneux C. Barriers to prompt and effective malaria treatment among the poorest population in Kenya. Malar J. 2010;9:144.
Article
PubMed
PubMed Central
Google Scholar
Filmer D, Pritchett LH. Estimating wealth effects without expenditure data–or tears: an application to educational enrollments in states of India. Demography. 2001;38:115–32.
CAS
PubMed
Google Scholar
StataCorp. Stata Statistical Software: release 14. College Station: STataCorp LP; 2015.
Google Scholar
Altaras R, Nuwa A, Agaba B, Streat E, Tibenderana JK, Martin S, et al. How do patients and health workers interact around malaria rapid diagnostic testing, and how are the tests experienced by patients in practice? A qualitative study in Western Uganda. PLoS ONE. 2016;11:e0159525.
Article
PubMed
PubMed Central
Google Scholar
Chipwaza B, Mugasa JP, Mayumana I, Amuri M, Makungu C, Gwakisa PS. Community knowledge and attitudes and health workers’ practices regarding non-malaria febrile illnesses in Eastern Tanzania. PLoS Negl Trop Dis. 2014;8:e2896.
Article
PubMed
PubMed Central
Google Scholar
Chandler CI, Whitty CJ, Ansah EK. How can malaria rapid diagnostic tests achieve their potential? A qualitative study of a trial at health facilities in Ghana. Malar J. 2010;9:95.
Article
PubMed
PubMed Central
Google Scholar
Thiam S, Thior M, Faye B, Ndiop M, Diouf ML, Diouf MB, et al. Major reduction in anti-malarial drug consumption in Senegal after nation-wide introduction of malaria rapid diagnostic tests. PLoS ONE. 2011;6:e18419.
Article
CAS
PubMed
PubMed Central
Google Scholar
Faust C, Zelner J, Brasseur P, Vaillant M, Badiane M, Cisse M, et al. Assessing drivers of full adoption of test and treat policy for malaria in Senegal. Am J Trop Med Hyg. 2015;93:159–67.
Article
PubMed
PubMed Central
Google Scholar
Mbacham WF, Mangham-Jefferies L, Cundill B, Achonduh OA, Chandler CI, Ambebila JN, et al. Basic or enhanced clinician training to improve adherence to malaria treatment guidelines: a cluster-randomised trial in two areas of Cameroon. Lancet Glob Health. 2014;2:e346–58.
Article
PubMed
Google Scholar
Singlovic J, Ajayi IO, Nsungwa-Sabiiti J, Siribié M, Sanou AK, Jegede AS, et al. Compliance with malaria rapid diagnostic testing by community health workers in 3 malaria-endemic countries of sub-Saharan Africa: an observational study. Clin Infect Dis. 2016;63:S276–82.
Article
PubMed
PubMed Central
Google Scholar
Cundill B, Mbakilwa H, Chandler CI, Mtove G, Mtei F, Willetts A, et al. Prescriber and patient-oriented behavioural interventions to improve use of malaria rapid diagnostic tests in Tanzania: facility-based cluster randomised trial. BMC Med. 2015;13:118.
Article
PubMed
PubMed Central
Google Scholar
Modrek S, Schatzkin E, De La Cruz A, Isiguzo C, Nwokolo E, Anyanti J, et al. SMS messages increase adherence to rapid diagnostic test results among malaria patients: results from a pilot study in Nigeria. Malar J. 2014;13:69.
Article
PubMed
PubMed Central
Google Scholar
Maffioli E, O’Meara WP, Turner EL, Mohanan M. Can individuals’ beliefs help us understand nonadherence to malaria test results? Evidence from rural Kenya. SSRN Economic Research Initiatives at Duke (ERID) Working Paper No. 243. https://ssrn.com/abstract=2912940.
Saran I, Cohen J. Disparities between malaria infection and treatment rates: evidence from a cross-sectional analysis of households in Uganda. PLoS ONE. 2017;12:e0171835.
Article
PubMed
PubMed Central
Google Scholar
Chandler CIR, Hall-Clifford R, Asaph T, Pascal M, Clarke S, Mbonye AK. Introducing malaria rapid diagnostic tests at registered drug shops in Uganda: limitations of diagnostic testing in the reality of diagnosis. Soc Sci Med. 2011;72:937–44.
Article
PubMed
PubMed Central
Google Scholar
Adhvaryu A. Learning, misallocation, and technology adoption: evidence from new malaria therapy in Tanzania. Rev Econ Stud. 2014;81:1331–65.
Article
PubMed
PubMed Central
Google Scholar
Pilkington H. Malaria, from natural to supernatural: a qualitative study of mothers’ reactions to fever (Dienga, Gabon). J Epidemiol Comm Health. 2004;58:826–30.
Article
Google Scholar