Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11.
Article
CAS
Google Scholar
Kienberger S, Hagenlocher M. Spatial-explicit modeling of social vulnerability to malaria in East Africa. Int J Health Geogr. 2014;13:29.
Article
Google Scholar
World Health Organization. World malaria report 2014. Geneva: World Health Organization; 2014.
Book
Google Scholar
Durnez L, Coosemans M. Residual transmission of malaria: an old issue for new approaches. In: Manguin S, editor. Anopheles mosquitoes—new insights into malaria vectors. London: Intech Publ; 2013. p. 671–704.
Google Scholar
Killeen GF. Characterizing, controlling and eliminating residual malaria transmission. Malar J. 2014;13:330.
Article
Google Scholar
Hagenlocher M, Castro MC. Mapping malaria risk and vulnerability in the United Republic of Tanzania: a spatial explicit model. Popul Health Metr. 2015;13:2.
Article
Google Scholar
Clark TD, Greenhouse B, Njama-Meya D, Nzarubara B, Maiteki-Sebuguzi C, Staedke SG, et al. Factors determining the heterogeneity of malaria incidence in children in Kampala, Uganda. J Infect Dis. 2008;198:393–400.
Article
Google Scholar
Valle D, Millar J, Amratia P. Spatial heterogeneity can undermine the effectiveness of country-wide test and treat policy for malaria: a case study from Burkina Faso. Malar J. 2016;15:513.
Article
Google Scholar
Chaccour C, Killeen GF. Mind the gap: residual malaria transmission, veterinary endectocides and livestock as targets for malaria vector control. Malar J. 2016;15:24.
Article
Google Scholar
Protopopoff N, Bortel WV, Speybroeck N, Geertruyden J-PV, Baza D, D’Alessandro U, et al. Ranking malaria risk factors to guide malaria control efforts in African highlands. PLoS ONE. 2009;4:e8022.
Article
Google Scholar
Craig MH, Snow RW, le Sueur D. A Climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol Today. 1999;15:105–11.
Article
CAS
Google Scholar
Hay SI, Cox J, Rogers DJ, Randolph SE, Stern DI, Shanks GD, et al. Climate change and the resurgence of malaria in the East African highlands. Nature. 2002;415:905–9.
Article
CAS
Google Scholar
Pascual M, Ahumada JA, Chaves LF, Rodó X, Bouma M. Malaria resurgence in the East African highlands: temperature trends revisited. Proc Natl Acad Sci USA. 2006;103:5829–34.
Article
CAS
Google Scholar
Krefis AC, Schwarz NG, Nkrumah B, Acquah S, Loag W, Sarpong N, et al. Principal component analysis of socioeconomic factors and their association with malaria in children from the Ashanti Region, Ghana. Malar J. 2010;9:201.
Article
Google Scholar
Koram KA, Bennett S, Adiamah JH, Greenwood BM. Socio-economic risk factors for malaria in a peri-urban area of The Gambia. Trans R Soc Trop Med Hyg. 1995;89:146–50.
Article
CAS
Google Scholar
Kreuels B, Kobbe R, Adjei S, Kreuzberg C, von Reden C, Bäter K, et al. Spatial variation of malaria incidence in young children from a geographically homogeneous area with high endemicity. J Infect Dis. 2008;197:85–93.
Article
Google Scholar
Njama D, Dorsey G, Guwatudde D, Kigonya K, Greenhouse B, Musisi S, et al. Urban malaria: primary caregivers’ knowledge, attitudes, practices and predictors of malaria incidence in a cohort of Ugandan children. Trop Med Int Health. 2003;8:685–92.
Article
Google Scholar
Rulisa S, Kateera F, Bizimana JP, Agaba S, Dukuzumuremyi J, Baas L, et al. Malaria prevalence, spatial clustering and risk factors in a low endemic area of eastern Rwanda: a cross sectional study. PLoS ONE. 2013;8:e69443.
Article
CAS
Google Scholar
Adigun AB, Gajere EN, Oresanya O, Vounatsou P. Malaria risk in Nigeria: Bayesian geostatistical modelling of 2010 malaria indicator survey data. Malar J. 2015;14:156.
Article
Google Scholar
Sharma RK, Singh MP, Saha KB, Bharti PK, Jain V, Singh PP, et al. Socio-economic & household risk factors of malaria in tribal areas of Madhya Pradesh, central India. Indian J Med Res. 2015;141:567.
PubMed
PubMed Central
Google Scholar
Ferrari G, Ntuku HMT, Ross A, Schmidlin S, Kalemwa DM, Tshefu AK, et al. Identifying risk factors for Plasmodium infection and anaemia in Kinshasa, Democratic Republic of Congo. Malar J. 2016;15:362.
Article
Google Scholar
Chirombo J, Lowe R, Kazembe L. Using structured additive regression models to estimate risk factors of malaria: analysis of 2010 Malawi malaria indicator survey data. PLoS ONE. 2014;9:e101116.
Article
Google Scholar
Weiss DJ, Mappin B, Dalrymple U, Bhatt S, Cameron E, Hay SI, et al. Re-examining environmental correlates of Plasmodium falciparum malaria endemicity: a data-intensive variable selection approach. Malar J. 2015;14:68.
Article
Google Scholar
Babyak MA. What you see may not be what you get: a brief, nontechnical introduction to overfitting in regression-type models. Psychosom Med. 2004;66:411–21.
PubMed
Google Scholar
Tremblay M, Dahm J, Wamae C, De Glanville W, Fèvre E, Döpfer D. Shrinking a large dataset to identify variables associated with increased risk of Plasmodium falciparum infection in Western Kenya. Epidemiol Infect. 2015;143:3538–45.
Article
CAS
Google Scholar
Sturrock HJ, Cohen JM, Keil P, Tatem AJ, Le Menach A, Ntshalintshali NE, et al. Fine-scale malaria risk mapping from routine aggregated case data. Malar J. 2014;13:421.
Article
Google Scholar
Kouwayè B, Fonton N, Rossi F. Lasso based feature selection for malaria risk exposure prediction. ArXiv Prepr. ArXiv151101284; 2015.
Hoeting JA, Madigan D, Raftery AE, Volinsky CT. Bayesian model averaging: a tutorial. Stat Sci. 1999;14:382–401.
Article
Google Scholar
Hoeting JA, Madigan D, Raftery AE, Volinsky CT. Bayesian model averaging. In: Proceedings of the AAAI workshop on integrating multiple learned models. 1998. p. 77–83.
Wang D, Zhang W, Bakhai A. Comparison of Bayesian model averaging and stepwise methods for model selection in logistic regression. Stat Med. 2004;23:3451–67.
Article
Google Scholar
Genell A, Nemes S, Steineck G, Dickman PW. Model selection in Medical Research: a simulation study comparing Bayesian Model Averaging and Stepwise Regression. BMC Med Res Methodol. 2010;10:108.
Article
Google Scholar
Zhao K, Valle D, Popescu S, Zhang X, Mallick B. Hyperspectral remote sensing of plant biochemistry using Bayesian model averaging with variable and band selection. Remote Sens Environ. 2013;132:102–19.
Article
Google Scholar
Wintle BA, McCARTHY MA, Volinsky CT, Kavanagh RP. The use of Bayesian model averaging to better represent uncertainty in ecological models. Conserv Biol. 2003;17:1579–90.
Article
Google Scholar
Raftery AE, Gneiting T, Balabdaoui F, Polakowski M. Using Bayesian model averaging to calibrate forecast ensembles. Mon Weather Rev. 2005;133:1155–74.
Article
Google Scholar
Sloughter JML, Raftery AE, Gneiting T, Fraley C. Probabilistic quantitative precipitation forecasting using Bayesian model averaging. Mon Weather Rev. 2007;135:3209–20.
Article
Google Scholar
Posada D, Buckley TR. Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol. 2004;53:793–808.
Article
Google Scholar
Dobigeon N, Tourneret J-Y, Chang C-I. Semi-supervised linear spectral unmixing using a hierarchical Bayesian model for hyperspectral imagery. IEEE Trans Signal Process. 2008;56:2684–95.
Article
Google Scholar
Volinsky CT, Madigan D, Raftery AE, Kronmal RA. Bayesian model averaging in proportional hazard models: assessing the risk of a stroke. J R Stat Soc Ser C Appl Stat. 1997;46:433–48.
Article
Google Scholar
Viallefont V, Raftery AE, Richardson S. Variable selection and Bayesian model averaging in case-control studies. Stat Med. 2001;20:3215–30.
Article
CAS
Google Scholar
National Malaria Control Programme, University of Health & Allied Sciences, AGA Malaria Control Programme, World Health Organization and the INFORM Project. An epidemiological profile of malaria and its control in Ghana; 2013. https://www.linkmalaria.org/sites/www.linkmalaria.org/files/content/country/profiles/Ghana-epi-report-2014.pdf. Accessed 13 Oct 2017.
Owusu-Agyei S, Asante KP, Adjuik M, Adjei G, Awini E, Adams M, et al. Epidemiology of malaria in the forest-savanna transitional zone of Ghana. Malar J. 2009;8:220.
Article
Google Scholar
Coleman S, Dadzie SK, Seyoum A, Yihdego Y, Mumba P, Dengela D, et al. A reduction in malaria transmission intensity in Northern Ghana after 7 years of indoor residual spraying. Malar J. 2017;16:324.
Article
Google Scholar
Yelyang A. Conflict prevention strategies in Northern Ghana: a case study of the ethnic conflicts in Kpemale. J Confl Transform Secur. 2016;5:75–94.
Google Scholar
President’s Malaria Initiative. Ghana Malaria Operational Plan FY 2014. https://www.pmi.gov/docs/default-source/default-document-library/malaria-operational-plans/fy14/ghana_mop_fy14.pdf?sfvrsn=20. Accessed 13 Oct 2017.
President’s Malaria Initiative. Ghana Malaria Operational Plan FY 2015. https://www.pmi.gov/docs/default-source/default-document-library/malaria-operational-plans/fy-15/fy-2015-ghana-malaria-operational-plan.pdf?sfvrsn=3. Accessed 13 Oct 2017.
Prata N, Morris L, Mazive E, Vahidnia F, Stehr M. Relationship between HIV Risk perception and condom use: evidence from a population-based survey in Mozambique. Int Fam Plan Perspect. 2006;32:192–200.
Article
Google Scholar
Jones RM, Masago Y, Bartrand T, Haas CN, Nicas M, Rose JB. Characterizing the risk of infection from Mycobacterium tuberculosis in commercial passenger aircraft using quantitative microbial risk assessment. Risk Anal. 2009;29:355–65.
Article
Google Scholar
Ayele DG, Zewotir TT, Mwambi HG. Prevalence and risk factors of malaria in Ethiopia. Malar J. 2012;11:195.
Article
Google Scholar
Green PJ. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika. 1995;82:711–32.
Article
Google Scholar
R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2017. https://www.R-project.org/. Accessed 3 Mar 2018.
Denison DG. Bayesian methods for nonlinear classification and regression. Hoboken: John Wiley & Sons; 2002.
Google Scholar
Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B Methodol. 1996;58:267–88.
Google Scholar
O’Hara RB, Sillanpää MJ. A review of Bayesian variable selection methods: what, how and which. Bayesian Anal. 2009;4:85–117.
Article
Google Scholar
Zeugner S, Feldkircher M. Bayesian model averaging employing fixed and flexible priors: the BMS package for R. J Stat Softw. 2015;68:1–37.
Article
Google Scholar
Hooten MB, Hobbs NT. A guide to Bayesian model selection for ecologists. Ecol Monogr. 2015;85:3–28.
Article
Google Scholar
Kyung M, Gill J, Ghosh M, Casella G. Penalized regression, standard errors, and Bayesian lassos. Bayesian Anal. 2010;5:369–411.
Article
Google Scholar
Javanmard A, Montanari A. Confidence intervals and hypothesis testing for high-dimensional regression. J Mach Learn Res. 2014;15:2869–909.
Google Scholar
Lockhart R, Taylor J, Tibshirani RJ, Tibshirani R. A significance test for the Lasso. Ann Stat. 2014;42:413–68.
Article
Google Scholar
Altman N, Krzywinski M. Points of significance: P values and the search for significance. Nat Methods. 2016. https://doi.org/10.1038/nmeth.4120.
Article
PubMed
PubMed Central
Google Scholar
Tu JV. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol. 1996;49:1225–31.
Article
CAS
Google Scholar
Snow RW, Omumbo JA, Lowe B, Molyneux CS, Obiero J-O, Palmer A, et al. Relation between severe malaria morbidity in children and level of Plasmodium falciparum transmission in Africa. Lancet. 1997;349:1650–4.
Article
CAS
Google Scholar
Dike N, Onwujekwe O, Ojukwu J, Ikeme A, Uzochukwu B, Shu E. Influence of education and knowledge on perceptions and practices to control malaria in Southeast Nigeria. Soc Sci Med. 2006;63:103–6.
Article
Google Scholar
Feachem RG, Phillips AA, Hwang J, Cotter C, Wielgosz B, Greenwood BM, et al. Shrinking the malaria map: progress and prospects. Lancet. 2010;376:1566–78.
Article
Google Scholar
Agyepong IA, Adjei S. Public social policy development and implementation: a case study of the Ghana National Health Insurance scheme. Health Policy Plan. 2008;23:150–60.
Article
Google Scholar
Guyant P, Corbel V, Guérin PJ, Lautissier A, Nosten F, Boyer S, et al. Past and new challenges for malaria control and elimination: the role of operational research for innovation in designing interventions. Malar J. 2015;14:279.
Article
Google Scholar
Worrall E, Rietveld A, Delacollette C. The burden of malaria epidemics and cost-effectiveness of interventions in epidemic situations in Africa. Am J Trop Med Hyg. 2004;71(2_suppl):136–40.
Article
Google Scholar
Greenwood B. Intermittent preventive treatment—a new approach to the prevention of malaria in children in areas with seasonal malaria transmission. Trop Med Int Health. 2006;11:983–91.
Article
Google Scholar
White MT, Conteh L, Cibulskis R, Ghani AC. Costs and cost-effectiveness of malaria control interventions—a systematic review. Malar J. 2011;10:337.
Article
Google Scholar
Cairns M, Roca-Feltrer A, Garske T, Wilson AL, Diallo D, Milligan PJ, et al. Estimating the potential public health impact of seasonal malaria chemoprevention in African children. Nat Commun. 2012;3:881.
Article
Google Scholar
Hay SI, Guerra CA, Tatem AJ, Noor AM, Snow RW. The global distribution and population at risk of malaria: past, present, and future. Lancet Infect Dis. 2004;4:327–36.
Article
Google Scholar
Murray CJ, Rosenfeld LC, Lim SS, Andrews KG, Foreman KJ, Haring D, et al. Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet. 2012;379:413–31.
Article
Google Scholar
Noor AM, Kinyoki DK, Mundia CW, Kabaria CW, Mutua JW, Alegana VA, et al. The changing risk of Plasmodium falciparum malaria infection in Africa: 2000–10: a spatial and temporal analysis of transmission intensity. Lancet. 2014;383:1739–47.
Article
Google Scholar
Pond BS. Malaria indicator surveys demonstrate a markedly lower prevalence of malaria in large cities of sub-Saharan Africa. Malar J. 2013;12:313.
Article
Google Scholar
Vlahov D, Galea S. Urbanization, urbanicity, and health. J Urban Health. 2002;79:S1–12.
Article
Google Scholar
Feikin DR, Nguyen LM, Adazu K, Ombok M, Audi A, Slutsker L, et al. The impact of distance of residence from a peripheral health facility on pediatric health utilisation in rural western Kenya. Trop Med Int Health. 2009;14:54–61.
Article
Google Scholar
Blanford JI, Kumar S, Luo W, MacEachren AM. It’s a long, long walk: accessibility to hospitals, maternity and integrated health centers in Niger. Int J Health Geogr. 2012;11:24.
Article
Google Scholar
Huerta Munoz U, Källestål C. Geographical accessibility and spatial coverage modeling of the primary health care network in the Western Province of Rwanda. Int J Health Geogr. 2012;11:40.
Article
Google Scholar
Oppong JR. Accommodating the rainy season in Third World location-allocation applications. Socioecon Plann Sci. 1996;30:121–37.
Article
Google Scholar
Dunson DB. Commentary: practical advantages of Bayesian analysis of epidemiologic data. Am J Epidemiol. 2001;153:1222–6.
Article
CAS
Google Scholar
Ghana Statistical Service—GSS, Ghana Health Service—GHS, ICF Macro. Ghana Demographic and Health Survey 2008. Accra, Ghana: GSS, GHS, and ICF Macro; 2009. http://dhsprogram.com/pubs/pdf/FR221/FR221.pdf. Accessed 13 Oct 2017.
Center for International Earth Science Information Network (CIESIN)/Columbia University, and Information Technology Outreach Services (ITOS)/University of GeorgiaCenter for International Earth Science Information Network (CIESIN)/Columbia University and ITOS (ITOS)/University of G. Global Roads Open Access Data Set, Version 1 (gROADSv1). http://sedac.ciesin.columbia.edu/data/set/groads-global-roads-open-access-v1. Accessed 4 Apr 2016.
ESRI. Digital chart of the world (DCW): inland water bodies. http://www.diva-gis.org. Accessed 5 Apr 2014.
Jarvis A, Reuter HI, Nelson A, Guevara E. Hole-filled SRTM for the globe Version 4, CGIAR-CSI SRTM 90 m Database, available at: h ttp. Srtm Csi Cgiar Org Last Access. 2012;5:2008.
Google Scholar
NASA LP DAAC. MODIS Level 1 Land Surface Temperatures Registered At-Sensor Radiance. Version 5. https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod11a2. Accessed 15 Jan 2016.
NASA LP DAAC. MODIS Level 1 Vegetation Indices Registered At-Sensor Radiance. Version 5. NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota. https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod13c1. Accessed 15 Jan 2016.
Stevens FR, Gaughan AE, Linard C, Tatem AJ, Sorichetta A, Hornby GM, et al. WorldPop-RF, Version 2b.1.1; 2015. https://doi.org/10.6084/m9.figshare.1491490.v3.
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol. 2005;25:1965–78.
Article
Google Scholar
Funk C, Verdin A, Michaelsen J, Peterson P, Pedreros D, Husak G. A global satellite assisted precipitation climatology. Earth Syst Sci Data Discuss. 2015;8:401–25.
Article
Google Scholar