WHO. World Malaria Report 2016. Geneva, World Health Organization, 2016. http://www.who.int/malaria. Accessed 1 Feb 2018.
WHO. WHO certifies Sri Lanka malaria-free. Geneva, World Health Organization, 2016. Available from: http://www.sero.who.int/mediacentre/releases/2016/1631/en. Accessed 1 Feb 2018.
Karunaweera ND, Galappaththy GN, Wirth DF. On the road to eliminate malaria in Sri Lanka: lessons from history, challenges, gaps in knowledge and research needs. Malar J. 2014;13:59.
Article
PubMed
PubMed Central
Google Scholar
WHO. World Malaria Report. Geneva, World Health Organization, 2013. http://www.who.int/malaria/publications/world_malaria_report_2013/wmr2013_country_profiles.pdf?ua=1.
Wijesundere D, Ramasamy R. Analysis of hisorical trends and recent elimination of malaria from Sri Lanka and its applicability for malaria control in other countries. Front Public Health. 2017;5:212. https://doi.org/10.3389/fpubh.2017.00212.
Article
PubMed
PubMed Central
Google Scholar
Akpogheneta O, Duah N, Tetteh K, Dunyo S, Lanar D, Pinder M, et al. Duration of naturally acquired antibody response to blood stage Plasmodium falciparum is age dependent and antigen specific. Infect Immun. 2008;76:1748–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dewasurendra RL, Suriyaphol P, Fernando SD, Carter R, Rockett K, Corran PH, et al. Genetic polymorphisms associated with anti-malarial antibody levels in a low and unstable malaria transmission area in southern Sri Lanka. Malar J. 2012;11:281.
Article
PubMed
PubMed Central
Google Scholar
Siddiqui W, Tam LQ, Kramer KJ, Hui GS, Case SE, Yamaga KM, et al. Merozoite surface coat precursor protein completely protects Aotus monkeys against Plasmodium falciparum malaria. Proc Natl Acad Sci USA. 1987;84:3014–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chappel JA, Holder AA. Monoclonal antibodies that inhibit Plasmodium falciparum invasion in vitro recognise the firstr growth factor-like domain of merozoite surface protein-1. Mol Biochem Parasit. 1993;60:303–11.
Article
CAS
Google Scholar
Daly TM, Long CA. A recombinant 15-kD carboxyl-terminal fragment of Plasmodium yoelii yoelii 17XL merozoite surface protein 1 induces a protective immune response in mice. Infect Immun. 1993;61:2462–7.
CAS
PubMed
PubMed Central
Google Scholar
Branch OH, Udhayakumar V, Hightower AW, Oloo AJ, Hawley WA, Nahlen BL, et al. A longitudinal investigation of IgG and IgM antibody responses to the merozoite surface protein-1 19 kD domain of Plasmodium falciparum in pregnant women and infants: associations with febrite illness, parasitemia and anemia. Am J Trop Med Hyg. 1998;58:211–9.
Article
CAS
PubMed
Google Scholar
Egan AF, Morris J, Barnish G, Allen S, Greenwood BM, Kaslow DC, et al. Clinical immunity to Plasmodium falciparum malaria is associated with serum antibodies to the 19-kDa C-terminal fragment of the merozoite surface antigen, PfMSP-1. J Infect Dis. 1996;173:765–9.
Article
CAS
PubMed
Google Scholar
Osier FHA, Fegan G, Polley SD, Murungi L, Verra F, Tetteh KKA, et al. Breadth and magnitude of antibody responses to multiple Plasmodium falciparum merozoite antigens are associated with protection from clinical malaria. Infect Immun. 2008;76:2240–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Riley E, Allen S, Wheeler J, Blackman M, Bennett S, Takacs B, et al. Naturally aquired cellular and humoral immune response to the major merozoite surface antigen (PfMSP1) of Plasmodium falciparum are associated with reduced malaria morbidity. Parasite Immunol. 1992;14:321–37.
Article
CAS
PubMed
Google Scholar
Remarque EJ, Faber BW, Kocken CHM, Thomas AW. Apical membrane antigen-1: a malaria vaccine candidate in review. Trends Parasitol. 2008;24:74–84.
Article
CAS
PubMed
Google Scholar
MacRaild CS, Anders RF, Foley M, Norton RS. Apical membrane antigen-1 as an anti-malarial drug target. Curr Top Med Chem. 2011;11:2039–47.
Article
CAS
PubMed
Google Scholar
Dodoo D, Aikins A, Kusi KA, Lamptey H, Remarque E, Milligan P, et al. Cohort study of the association of antibody levels to AMA1, MSP119, MSP3 and GLURP with protection from clinical malaria in Ghanaian children. Malar J. 2008;7:142.
Article
PubMed
PubMed Central
Google Scholar
Nebie I, Diarra A, Ouedraogo A, Soulama I, Bougouma EC, Tiono AB, et al. Humoral response to Plasmodium falciparum blood-stage antigens and association with incidence of clincal malaria in children living in an area of seasonal malaria transmission in Burkina Faso, West Africa. Infect Immun. 2008;76:759–66.
Article
CAS
PubMed
Google Scholar
Sjoberg K, Lepers J, Raharimalala L, Larsson A, Olerup O, Marbiah N, et al. Genetic regulation of human anti-malarial antiboies in twins. Proc Natl Acad Sci USA. 1992;89:2101–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luoni G, Verra F, Arca B, Sirima BS, Troye-Blomberg M, Coluzzi M, et al. Antimalarial antibody levels and IL4 polymorphism in the Fulani of West Africa. Genes Immun. 2001;2:411–4.
Article
CAS
PubMed
Google Scholar
Afridi S, Atkinson A, Garnier S, Fumoux F, Rihet P. Malaria resistance genes are associated with the levels of IgG subclasses directed against Plasmodium falciparum blood-stage antigens in Burkina Faso. Malar J. 2012;11:308.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shelton J, Corran P, Kwiatkowski D, Karunaweera N, Dewasurendra RL. MalariaGEN. Genetic determinants of anti-malarial acquired immunity in a large multi-centre study. Malar J. 2015;14:333.
Article
PubMed
PubMed Central
Google Scholar
Department of Census and Statistics Sri Lanka. 2011. http://www.statistics.gov.lk/.
Dewasurendra RL, Dias JN, Sepulveda N, Gunawardena GSA, Chandrasekharan N, Drakeley C, et al. Effectiveness of a serological tool to predict malaria transmission intensity in an elimination setting. BMC Infect Dis. 2017;17:49.
Article
PubMed
PubMed Central
Google Scholar
MalariaGEN. Malaria Genomic Epidemiology Network. 2007. http://www.malariagen.net/ Accessed 1 Feb 2018.
Zhang L, Cui X, Schmitt K, Hubert R, Navidi W, Arnheim N. Whole genome amplification from a single cell: implications for genetic analysis. Proc Natl Acad Sci USA. 1992;89:5847–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barrett J, Fry B, Maller J, Daly M. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–5.
Article
CAS
PubMed
Google Scholar
Gabriel S, Schaffner S, Nguyen H, Moor J, Roy J, Blumenstiel B, et al. The structure of haplotype blocks in the human genome. Science. 2002;296:2225–9.
Article
CAS
PubMed
Google Scholar
Drakeley C, Corran PH, Coleman P, Tongren JE, McDonald SLR, Carneiro I, et al. Estimating medium and long term trends in malaria transmission by using serological markers of malaria exposure. Proc Natl Acad Sci USA. 2005;102:5108–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Warren M, Collins W, Jeffery G, Skinner J. The seroepidemiology of malaria in Middle America II. Studies on the Pacific coast of Costa Rica. Am J Trop Med Hyg. 1975;24:749–54.
Article
CAS
PubMed
Google Scholar
Ondigo B, Hodges JS, Ireland KF, Magak NG, Lanar DE, Datta S, et al. Estimation of recent and long-term malaria transmission in a population by antibody testing to multiple Plasmodium falciparum antigens. J Infect Dis. 2014;210:1123–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Warren M, Collins W, Cedillos R, Jeffery G. The seroepidemiology of malaria in Middle America III. Serologic assessment of localized Plasmodium falciparum epidemics. Am J Trop Med Hyg. 1976;25:20–5.
Article
CAS
PubMed
Google Scholar
Manz R, Hauser A, Redbruch A. Maintenance of serum antibody levels. Annu Rev Immunol. 2005;23:367–86.
Article
CAS
PubMed
Google Scholar
Druilhe P, Pradier O, Marc JP, Miltgen F, Mazier D, Parent G. Levels of antibodies to Plasmodium falciparum sporozoite surface antigens reflect malaria transmission rates and are persistent in the absence of reinfection. Infect Immun. 1986;53:393–7.
CAS
PubMed
PubMed Central
Google Scholar
Noland G, Hendle-Paterson B, Min X, Morrmann A, Vulule J, Narum D, et al. Low prevalence of antibodies to pre-erythrocytic but not blood stage Plasmodium falciparum antigens in an area of unstable malaria transmission compared to prevalence in an area of stable malaria transmission. Infect Immun. 2008;76:5721–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kinyanjui S, Convey D, Lanar D, Marsh K. IgG antibody responses to Plasmodium falciparum merozoite antgens in Kenyan children have a short half-life. Malar J. 2007;6:82.
Article
PubMed
PubMed Central
Google Scholar
Mendis C, Gamage-Mendis AC, De Zoysa APK, Abhayawardena TA, Carter R, Herath PRJ, et al. Characteristics of malaria transmission in Kataragama, Sri Lanka: a focus for immuno-epidemiological studies. Am J Trop Med Hyg. 1990;42:298–308.
Article
CAS
PubMed
Google Scholar
Cutler D, Fung W, Krener M, Singhal M, Vogl T. Early life malaria exposure and adult outcomes: evidence from malaria eradication in India. Am Econ J Appl Econ. 2010;2:72–94.
Article
Google Scholar
Giha HA, Rosthoj S, Dodoo D, Haviid L, Satti GMH, Arnot DA, et al. The epidemiology of febrile malaria episodes in an area of unstable and seasonal transmission. Trans R Soc Trop Med Hyg. 2000;94:645–51.
Article
CAS
PubMed
Google Scholar
Tongren JE, Drakeley CJ, McDonald SLR, Reyburn HG, Manjurano A, Nkya WMM, et al. Target antigen, age, and duration of antigen exposure independently regulate immunoglobulin G subclass switching in malaria. Infect Immun. 2006;74:257–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weiss GE, Traore B, Kayentao K, Ongoiba A, Doumbo S, Doumtabe D, et al. The Plasmodium falciparum-specific human memory b cell compartment expands gradually with repeated malaria infections. PLoS Pathog. 2010;6:e1000912.
Article
PubMed
PubMed Central
Google Scholar
Badu K, Afrane YA, Labri J, Stewart VA, Waitumbi J, Angov E, et al. Marked variation in MSP-119 antibody responses to malaria in western Kenyan highlands. BMC Infect Dis. 2012;12:50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Premaratna R, Galappaththy G, Chandrasena N, Fernando R, Nawasiwatte T, de Silva N, et al. Clinicians who practice in countries reaching malaria elimination, what should they be aware of: lessons learnt from recent experience in Sri Lanka. Malar J. 2011;10:302.
Article
PubMed
PubMed Central
Google Scholar
Maiga B, Dolo A, Toure O, Dara V, Tapily A, Campino S, et al. Human candidate polymorphisms in sympatric ethnic groups dirrering in malaria susceptibility in Mali. PLoS ONE. 2013;8:e75675.
Article
CAS
PubMed
PubMed Central
Google Scholar
Manjurano A, Clark T, Nadjm B, Mtove G, Wangal H, Sepulveda N, et al. Candidate human genetic polymorphisms and severe malaria in a Tanzanian population. PLoS ONE. 2012;7:e47463.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pagani F, Baralle F. Genomic variants in exons and introns: identifying the splicing spoilers. Nat Rev Genet. 2004;5:289–396.
Article
Google Scholar
Cooper D. Functional intronic polymorphisms: buried treasure awaiting discovery within our genes. Hum Genomics. 2010;4:284–8.
Article
PubMed
PubMed Central
Google Scholar
Greenwood TA, Kelsoe JR. Promotor and intronic variants affect the transcriptional regulation of the human dopamine transporter gene. Genomics. 2003;82:511–20.
Article
CAS
PubMed
Google Scholar
Ostrovsky O, Grushchenko-Polaq AV, Beider K, Mayorov M, Canaani J, Shimoni A, et al. Identification of strong intron enhancer in the heparanase gene: effect of functional rs4693608 variant on HPSE enhancer actibity in hematological and solid malignancies. Oncogenesis. 2018;7:51.
Article
PubMed
PubMed Central
Google Scholar
Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, et al. Ensembl 2018. Nucleic Acids Res. 2018;46:D754–61.
Article
CAS
PubMed
Google Scholar
Spielmann M, Mundlos S. Looking beyond the genes: the role of non-coding variants in human disease. Hum Mol Genet. 2016;25:R157–65.
Article
CAS
PubMed
Google Scholar
Naka I, Nishida N, Patarapotikul J, Nuchnoi P, Tokunaga K, Hananantachai H, et al. Identification of a haplotype block in the 5q31 cytokine gene cluster associated with the susceptibility to severe malaria. Malar J. 2009;8:232.
Article
PubMed
PubMed Central
Google Scholar
Garcia A, Marquet S, Bucheton B, Hillaire D, Cot M, Fievet N, et al. Linkage analysis of blood Plasmodium falciparum levels: interest of the 5q31–q33 chromosome region. Am J Trop Med Hyg. 1998;58:705–9.
Article
CAS
PubMed
Google Scholar
Flori L, Kumulungui B, Aucan C, Esnault C, Traore A, Fumoux F, et al. Linkage and association between Plasmodium falciparum blood infection levels and chromosome 5q31–q33. Genes Immun. 2003;4:265–8.
Article
CAS
PubMed
Google Scholar
Prakash D, Fesel C, Jain R, Cazenave P, Mishra G, Pied S. Clusters of cytokines determine malaria severity in Plasmodium falciparum infected patients from endemic areas of central India. J Infect Dis. 2006;194:198–207.
Article
CAS
PubMed
Google Scholar
Dubucquoi S, Desreumaux P, Janin A, Klein O, Goldman M, Tavernier J, et al. Interleukin 5 synthesis by eosinophils: association with granules and immunoglobulin-dependent secretion. J Exp Med. 1994;179:703–8.
Article
CAS
PubMed
Google Scholar
Giembycz MA, Lindsay M. Pharmocology of the eosinophil. Pharmocol Rev. 1999;51:216–339.
Google Scholar
Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801.
Article
CAS
PubMed
Google Scholar
Ockenhouse C, Hu W, Kester K, Cummings J, Stewart A, Heppner D, et al. Common and divergent immune response signaling pathways discovered in peripheral blood mononuclear cell gene expression patterns in presymptomatic and clinically apparent malaria. Infect Immun. 2006;74:5561–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Finney C, Lu Z, LeBourhis L, Philpott D, Kain K. Disruption of nod-like receptors alters inflammatory response to infection but does not confer protection in experimental cerebral malaria. Am J Trop Med Hyg. 2009;80:718–22.
Article
CAS
PubMed
Google Scholar
Walley A, Aucan C, Kwiatkowski D, Hill A. Interleukin-1 gene cluster polymorphisms and susceptibility to clinical malaria in a Gambian case-control study. Eur J Hum Genet. 2004;12:132–8.
Article
CAS
PubMed
Google Scholar
Koch O, Rockett K, Jallow M, Pinder M, Sisay-Joof F, Kwiatkowski D. Investigation of malaria susceptibility determinants in the IFNG/IL26/IL22 genomic region. Genes Immun. 2005;6:312–8.
Article
CAS
PubMed
Google Scholar