World Health Organization (WHO). A global malaria control strategy. Geneva: World Health Organization; 1993.
Google Scholar
SADC. Strategic plan to fight against malaria in the region Southern African Development Community Ministers of Health. 2007.
SADC. Windhoek declaration on eliminating malaria in the SADC region—2018. Windhoek; 2018.
Mabaso MLH, Sharp B, Lengeler C. Historical review of malarial control in southern African with emphasis on the use of indoor residual house-spraying. Trop Med Int Health. 2004. https://doi.org/10.1111/j.1365-3156.2004.01263.x.
Article
PubMed
Google Scholar
Kouznetsov RL. Malaria control by application of indoor spraying of residual insecticides in tropical Africa and its impact on community health. Trop Dr. 1977. https://doi.org/10.1177/004947557700700216.
Article
Google Scholar
Alves W, Blair DM. Malaria control in southern Rhodesia. J Trop Med Hyg. 1955;58:12.
Google Scholar
Alves W, Blair DM. An experiment in the control of malaria and bilharziasis. Trans R Soc Trop Med Hyg. 1953. https://doi.org/10.1016/0035-9203(53)90052-2.
Article
PubMed
Google Scholar
Packard RM. Maize, cattle and mosquitoes: the political economy of malaria epidemics in colonial Swaziland. J Afr Hist. 1984;25:189–212.
Article
PubMed
CAS
Google Scholar
Taylor P, Mutambu SL. A review of the malaria situation in Zimbabwe with special reference to the period 1972–1981. Trans R Soc Trop Med Hyg. 1986. https://doi.org/10.1016/0035-9203(86)90185-9.
Article
PubMed
Google Scholar
de Meillon B. Malaria survey of South-West Africa. Bull World Health Organ. 1951;4:3.
Google Scholar
Wilson DB, Garnham PC, Swellengrebel NH. A review of hyperendemic malaria. Trop Dis Bull. 1950;47:8.
Google Scholar
Swellengrebel NH, Annecke S, De Meillon B. Malaria investigations in some parts of the Transvaal and Zululand. J Am Med Assoc. 1931;97:25.
Google Scholar
Mastbaum O. Past and present position of malaria in Swaziland. J Trop Med Hyg. 1957;60:5.
Google Scholar
Mastbaum O. Clinical and on entomological surveys in Botswana: report by the Chief Medical Officer. 1944.
Soeiro A. Malaria in Mozambique with a special reference to its control in a mainly urban region (Lorenzo Marcus) and in a mainly rural region (Lumpompo valley). 1956.
Sharp BL, le Sueur D. Malaria in South Africa—the past, the present and selected implications for the future. S Afr Med J. 1996;86:83–9.
PubMed
CAS
Google Scholar
Caccone A, Marcondes CB, Sallum MAM, Forattini OP, Russello MA, Costa J, et al. Historical analysis of a near disaster: Anopheles gambiae in Brazil. Am J Trop Med Hyg. 2018;78:176–8.
Google Scholar
Freedman ML. Malaria control. Gaborone: The Botswana National Archives and Records Services; 1953.
Google Scholar
Hansford CF. Malaria control in Namibia. 1990.
Redditt V, ole-MoiYoi K, Rodriguez W, Rosenberg J, Weintraub R. Case in global health delivery: malaria control in Zambia. Boston: Harvard Business Publication; 2012.
Google Scholar
National Malaria Elimination Programme. Republic of Zambia Ministry of Health. 2018.
Bouma A. Malaria in Mozambique—what had been done to control epidemics. 1996.
Schwalbach JFL, De La Maza MC. A malaria em Mozambique (1937–1973). 1985.
Ferreira MJ. Report on malaria in Mozambique: analysis of the epidemiology, feasibility and planning of a malaria eradication campaign. Geneva: World Health Organization; 1958. (Unpublished document).
Google Scholar
Flint MES, Harrison MJS. DDT impact assessment project, Zimbabwe. 1998. https://www.gov.uk/government/publications/ddt-impact-assessment-project-zimbabwe-ev621s. Accessed 1 June 2021.
Maharaj R, Moonasar D, Baltazar C, Kunene S, Morris N. Sustaining control: lessons from the Lubombo spatial development initiative in southern Africa. Malar J. 2016. https://doi.org/10.1186/s12936-021-03699-x.
Article
PubMed
PubMed Central
Google Scholar
Durrheim DN, Ridl FC, Morris N, Seocharan I, Kunene S, Grange JJPLA, et al. Seven years of regional malaria control collaboration—Mozambique, South Africa, and Swaziland. Am J Trop Med Hyg. 2007;76:42–7.
Article
PubMed
Google Scholar
Nkya TE, Fillinger U, Dlamini M, Sangoro OP, Marubu R, Zulu Z, et al. Malaria in Eswatini, 2012–2019: a case study of the elimination effort. Malar J. 2021. https://doi.org/10.1186/s12936-021-03699-x.
Article
PubMed
PubMed Central
Google Scholar
Kgoroebutswe TK, Makate N, Fillinger U, Mpho M, Segoea G, Sangoro PO, Mutero CM, Chanda E, Ntebela D, Mogopa M, Mosweunyane T, Nkya TE. Vector control for malaria elimination in Botswana: progress, gaps and opportunities. Malar J. 2020. https://doi.org/10.1186/s12936-020-03375-6.
Article
PubMed
PubMed Central
Google Scholar
Antonio-Nkondjio C, Sonhafouo-Chiana N, Ngadjeu CS, Doumbe-Belisse P, Talipouo A, Djamouko-Djonkam L, et al. Review of the evolution of insecticide resistance in main malaria vectors in Cameroon from 1990 to 2017. Parasites Vectors. 2017. https://doi.org/10.1186/s13071-017-2417-9.
Article
PubMed
PubMed Central
Google Scholar
WHO. Global vector control response 2017–2030. Geneva: World Health Organization; 2017.
Google Scholar
Snow RW, Amratia P, Kabaria CW, Noor AM, Marsh K. The changing limits and incidence of malaria in Africa 1939–2009. Adv Parasitol. 2012. https://doi.org/10.1016/B978-0-12-394303-3.00010-4.
Article
PubMed
PubMed Central
Google Scholar
Chirebvu E, Chimbari MJ. Characteristics of Anopheles arabiensis larval habitats in Tubu village, Botswana. J Vector Ecol. 2015. https://doi.org/10.1111/jvec.12141.
Article
PubMed
Google Scholar
Mpofu M, Becker P, Mudambo K, de Jager C. Field effectiveness of microbial larvicides on mosquito larvae in malaria areas of Botswana and Zimbabwe. Malar J. 2016. https://doi.org/10.1186/s12936-016-1642-6.
Article
PubMed
PubMed Central
Google Scholar
Tawe L, Ramatlho P, Waniwa K, Muthoga CW, Makate N, Ntebela DS, et al. Preliminary survey on Anopheles species distribution in Botswana shows the presence of Anopheles gambiae and Anopheles funestus complexes. Malar J. 2017. https://doi.org/10.1186/s12936-017-1756-5.
Article
PubMed
PubMed Central
Google Scholar
Cornel AJ, Lee Y, Almeida APG, Johnson T, Mouatcho J, Venter M, et al. Mosquito community composition in South Africa and some neighboring countries. Parasites Vectors. 2018. https://doi.org/10.1186/s13071-018-2824-6.
Article
PubMed
PubMed Central
Google Scholar
Obopile M, Segoea G, Waniwa K, Ntebela DS, Moakofhi K, Motlaleng M, et al. Did microbial larviciding contribute to a reduction in malaria cases in eastern Botswana in 2012–2013? Public Health Action. 2018. https://doi.org/10.5588/pha.17.0012.
Article
PubMed
PubMed Central
Google Scholar
Erlank E, Koekemoer LL, Coetzee M. The importance of morphological identification of African anopheline mosquitoes (Diptera: Culicidae) for malaria control programmes. Malar J. 2018. https://doi.org/10.1186/s12936-018-2189-5.
Article
PubMed
PubMed Central
Google Scholar
Kgoroebutswe TK, Ramatlho P, Reeder S, Makate N, Paganotti GM. Distribution of Anopheles mosquito species, their vectorial role and profiling of knock-down resistance mutations in Botswana. Parasitol Res. 2020. https://doi.org/10.1007/s00436-020-06614-6.
Article
PubMed
Google Scholar
Buxton M, Wasserman RJ, Nyamukondiwa C. Spatial Anopheles arabiensis (Diptera: Culicidae) insecticide resistance patterns across malaria-endemic regions of Botswana. Malar J. 2020. https://doi.org/10.1186/s12936-020-03487-z.
Article
PubMed
PubMed Central
Google Scholar
Buxton M, Machekano H, Gotcha N, Nyamukondiwa C, Wasserman RJ. Are vulnerable communities thoroughly informed on mosquito bio-ecology and burden? Int J Environ Res Public Health. 2020. https://doi.org/10.3390/ijerph17218196.
Article
PubMed
PubMed Central
Google Scholar
Buxton M, Wasserman RJ, Nyamukondiwa C. Disease vector relative spatio-temporal abundances to water bodies and thermal fitness across Malaria endemic Semi-Arid areas. J Med Entomol. 2021. https://doi.org/10.1093/jme/tjaa221.
Article
PubMed
Google Scholar
Chirebvu E, Chimbari MJ. Characterization of an indoor-resting population of Anopheles arabiensis (Diptera: Culicidae) and the implications on malaria transmission in Tubu village in Okavango Subdistrict, Botswana. J Med Entomol. 2016. https://doi.org/10.1093/jme/tjw024.
Article
PubMed
Google Scholar
Hlongwana KW, Mabaso MLH, Kunene S, Govender D, Maharaj R. Community knowledge, attitudes and practices (KAP) on malaria in Swaziland: a country earmarked for malaria elimination. Malar J. 2009. https://doi.org/10.1186/1475-2875-8-29.
Article
PubMed
PubMed Central
Google Scholar
Dlamini SN, Franke J, Vounatsou P. Assessing the relationship between environmental factors and malaria vector breeding sites in Swaziland using multi-scale remotely sensed data. Geospat Health. 2015. https://doi.org/10.4081/gh.2015.302.
Article
PubMed
Google Scholar
Dlamini SV, Liao CW, Dlamini ZH, Siphepho JS, Cheng PC, Chuang TW, et al. Knowledge of human social and behavioral factors essential for the success of community malaria control intervention programs: the case of Lomahasha in Swaziland. J Microbiol Immunol Infect. 2017. https://doi.org/10.4081/gh.2015.302.
Article
PubMed
Google Scholar
Chanda E, Arshad M, Khaloua A, Zhang W, Namboze J, Uusiku P, et al. An investigation of the Plasmodium falciparum malaria epidemic in Kavango and Zambezi regions of Namibia in 2016. Trans R Soc Trop Med Hyg. 2018. https://doi.org/10.1093/trstmh/try097.
Article
PubMed
Google Scholar
Zharov AA. Observations on malaria vectors in Mozambique. I. The status of Anopheles populations before the start of mosquito control. Meditsinskaya Parazitologiya i Parazitarnye Bolezni. 1992;3:23–8.
Google Scholar
Crook SE, Baptista A. The effect of permethrin-impregnated wall-curtains on malaria transmission and morbidity in the suburbs of Maputo, Mozambique. Trop Geogr Med. 1995;47:64–7.
PubMed
CAS
Google Scholar
Thompson R, Begtrup K, Cuamba N, Dgedge M, Mendis C, Gamage-Mendis A, et al. The Matola malaria project: a temporal and spatial study of malaria transmission and disease in a suburban area of Maputo, Mozambique. Am J Trop Med Hyg. 1997. https://doi.org/10.4269/ajtmh.1997.57.550.
Article
PubMed
Google Scholar
Mendis C, Jacobsen JL, Gamage-Mendis A, Bule E, Dgedge M, Thompson R, et al. Anopheles arabiensis and An. funestus are equally important vectors of malaria in Matola coastal suburb of Maputo, southern Mozambique. Med Vet Entomol. 2000. https://doi.org/10.1046/j.1365-2915.2000.00228.x.
Article
PubMed
Google Scholar
Charlwood JD, Thompson R, Madsen H. Observations on the swarming and mating behaviour of Anopheles funestus from southern Mozambique. Malar J. 2003. https://doi.org/10.1186/1475-2875-2-2.
Article
PubMed
PubMed Central
Google Scholar
Maharaj R, Casimiro S, Mthembu SD, Sharp BL. The residual life of bendiocarb: a field-based evaluation from Mozambique. J Med Entomol. 2004. https://doi.org/10.1603/0022-2585-41.1.130.
Article
PubMed
Google Scholar
Aranda C, Aponte JJ, Saute F, Casimiro S, Pinto J, Sousa C, et al. Entomological characteristics of malaria transmission in Manhiça, a rural area in southern Mozambique. J Med Entomol. 2005. https://doi.org/10.1093/jmedent/42.2.180.
Article
PubMed
Google Scholar
Casimiro S, Coleman M, Hemingway J, Sharp B. Insecticide resistance in Anopheles arabiensis and Anopheles gambiae from Mozambique. J Med Entomol. 2006. https://doi.org/10.1093/jmedent/43.2.276.
Article
PubMed
Google Scholar
Casimiro SLR, Hemingway J, Sharp BL, Coleman M. Monitoring the operational impact of insecticide usage for malaria control on Anopheles funestus from Mozambique. Malar J. 2007. https://doi.org/10.1186/1475-2875-6-142.
Article
PubMed
PubMed Central
Google Scholar
Chase C, Sicuri E, Sacoor C, Nhalungo D, Nhacolo A, Alonso PL, et al. Determinants of household demand for bed nets in a rural area of southern Mozambique. Malar J. 2009. https://doi.org/10.1186/1475-2875-8-132.
Article
PubMed
PubMed Central
Google Scholar
Cuamba Nelson MC. The role of Anopheles merus in malaria transmission in an area of southern Mozambique. Mozamb J Vector Borne Dis. 2009. https://doi.org/10.1016/j.socscimed.2010.01.020.
Article
PubMed
Google Scholar
Montgomery CM, Munguambe K, Pool R. Group-based citizenship in the acceptance of indoor residual spraying (IRS) for malaria control in Mozambique. Soc Sci Med. 2010. https://doi.org/10.1371/journal.pone.0011010.
Article
PubMed
Google Scholar
Cuamba N, Morgan JC, Irving H, Steven A, Wondji CS. High level of pyrethroid resistance in an Anopheles funestus population of the Chokwe district in Mozambique. PLoS ONE. 2010. https://doi.org/10.1371/journal.pone.0011010.
Article
PubMed
PubMed Central
Google Scholar
MacEdo De Oliveira A, Wolkon A, Krishnamurthy R, Erskine M, Roberts J, Sate F. Ownership and usage of insecticide-treated bed nets after free distribution via a voucher system in two provinces of Mozambique. Malar J. 2010. https://doi.org/10.1186/1475-2875-9-222.
Article
PubMed
PubMed Central
Google Scholar
Coleman M, Abilio AP, Kleinschmidt I, Rehman AM, Cuamba N, Ramdeen V, et al. The emergence of insecticide resistance in central Mozambique and potential threat to the successful indoor residual spraying malaria control programme. Malar J. 2011. https://doi.org/10.1186/1475-2875-10-110.
Article
PubMed
PubMed Central
Google Scholar
Munguambe K, Pool R, Montgomery C, Bavo C, Nhacolo A, Fiosse L, et al. What drives community adherence to indoor residual spraying (IRS) against malaria in Manhiça district, rural Mozambique: a qualitative study. Malar J. 2011. https://doi.org/10.1186/1475-2875-10-344.
Article
PubMed
PubMed Central
Google Scholar
Kloke RG, Nhamahanga E, Hunt RH, Coetzee M. Vectorial status and insecticide resistance of Anopheles funestus from a sugar estate in southern Mozambique. Parasites Vectors. 2011. https://doi.org/10.1186/1756-3305-4-16.
Article
PubMed
PubMed Central
Google Scholar
Wondji CS, Dabire RK, Tukur Z, Irving H, Djouaka R, Morgan JC. Identification and distribution of a GABA receptor mutation conferring dieldrin resistance in the malaria vector Anopheles funestus in Africa. Insect Biochem Mol Biol. 2011. https://doi.org/10.1016/j.ibmb.2011.03.012.
Article
PubMed
PubMed Central
Google Scholar
Kampango A, Cuamba N, Charlwood JD. Does moonlight influence the biting behaviour of Anopheles funestus? Med Vet Entomol. 2011. https://doi.org/10.1111/j.1365-2915.2010.00917.x.
Article
PubMed
Google Scholar
Charlwood JD, Tomás EVE. Do developing malaria parasites manipulate their mosquito host? Evidence from infected Anopheles funestus (Giles) from Mozambique. Trans R Soc Trop Med Hyg. 2011. https://doi.org/10.1016/j.trstmh.2011.02.006.
Article
PubMed
Google Scholar
Charlwood JD. Studies on the bionomics of male Anopheles gambiae Giles and male Anopheles funestus Giles from southern Mozambique. J Vector Ecol. 2011. https://doi.org/10.1111/j.1948-7134.2011.00179.x.
Article
PubMed
Google Scholar
Kampango A, Bragança M, de Sousa B, Charlwood JD. Netting barriers to prevent mosquito entry into houses in southern Mozambique: a pilot study. Malar J. 2013. https://doi.org/10.1186/1475-2875-12-99.
Article
PubMed
PubMed Central
Google Scholar
Charlwood JD, Macia GA, Manhaca M, Sousa B, Cuamba N, Bragança M. Population dynamics and spatial structure of human-biting mosquitoes, inside and outside of houses, in the Chockwe irrigation scheme, southern Mozambique. Geospat Health. 2013. https://doi.org/10.4081/gh.2013.89.
Article
PubMed
Google Scholar
Charlwood JD, Cuamba N, Tomás EV, Briët OJ. Living on the edge: a longitudinal study of Anopheles funestus in an isolated area of Mozambique. Malar J. 2013. https://doi.org/10.1186/1475-2875-12-208.
Article
PubMed
PubMed Central
Google Scholar
Plucinski MM, Chicuecue S, Macete E, Colborn J, Yoon SS, Patrick Kachur S, et al. Evaluation of a universal coverage bed net distribution campaign in four districts in Sofala Province, Mozambique. Malar J. 2014. https://doi.org/10.1186/1475-2875-13-427.
Article
PubMed
PubMed Central
Google Scholar
Abílio AP, Marrune P, de Deus N, Mbofana F, Muianga P, Kampango A. Bio-efficacy of new long-lasting insecticide-treated bed nets against Anopheles funestus and Anopheles gambiae from central and northern Mozambique. Malar J. 2015. https://doi.org/10.1186/s12936-015-0885-y.
Article
PubMed
PubMed Central
Google Scholar
Glunt KD, Abílio AP, Bassat Q, Bulo H, Gilbert AE, Huijben S, et al. Long-lasting insecticidal nets no longer effectively kill the highly resistant Anopheles funestus of southern Mozambique. Malar J. 2015. https://doi.org/10.1186/s12936-015-0807-z.
Article
PubMed
PubMed Central
Google Scholar
Plucinski MM, Chicuecue S, Macete E, Chambe GA, Muguande O, Matsinhe G, et al. Sleeping arrangements and mass distribution of bed nets in six districts in central and northern Mozambique. TM & IH. 2015. https://doi.org/10.1111/tmi.12596.
Article
Google Scholar
Quive IM, Candrinho B, Geelhoed D. Household survey of availability of long-lasting insecticide-treated nets and its determinants in rural Mozambique. Malar J. 2015. https://doi.org/10.1186/s12936-015-0811-3.
Article
PubMed
PubMed Central
Google Scholar
Morgan J, Abílio AP, do Rosario Pondja M, Marrenjo D, Luciano J, Fernandes G, et al. Physical durability of two types of long-lasting insecticidal nets (LLINs) three years after a mass LLIN distribution campaign in Mozambique, 2008–2011. Am J Trop Med. 2015. https://doi.org/10.4269/ajtmh.14-0023.
Article
Google Scholar
Vanden Eng JL, Chan A, Abílio AP, Wolkon A, Ponce De Leon G, Gimnig J, et al. Bed net durability assessments: exploring a composite measure of net damage. PLoS ONE. 2015. https://doi.org/10.1371/journal.pone.0128499.
Article
PubMed
PubMed Central
Google Scholar
Arroz JAH, Chirrute F, Mendis C, Chande MH, Kollhoff V. Assessment on the ownership and use of mosquito nets in Mozambique. Rev Saude Publica. 2016. https://doi.org/10.1590/S1518-8787.2016050006335.
Article
PubMed
PubMed Central
Google Scholar
Moon TD, Hayes CB, Blevins M, Lopez ML, Green AF, González-Calvo L, et al. Factors associated with the use of mosquito bed nets: results from two cross-sectional household surveys in Zambézia Province, Mozambique. Malar J. 2016. https://doi.org/10.1186/s12936-016-1250-5.
Article
PubMed
PubMed Central
Google Scholar
Charlwood JD. Some like it hot: a differential response to changing temperatures by the malaria vectors Anopheles funestus and An. gambiae s.l. PeerJ. 2017. https://doi.org/10.7717/peerj.3099.
Article
PubMed
PubMed Central
Google Scholar
Arroz JAH, Mendis C, Pinto L, Candrinho B, Pinto J, Martins MDRO. Implementation strategies to increase access and demand of long-lasting insecticidal nets: a before-and-after study and scale-up process in Mozambique. Malar J. 2017. https://doi.org/10.1186/s12936-017-2086-3.
Article
PubMed
PubMed Central
Google Scholar
Riveron JM, Huijben S, Tchapga W, Tchouakui M, Wondji MJ, Tchoupo M, et al. Escalation of pyrethroid resistance in the malaria vector Anopheles funestus induces a loss of efficacy of piperonyl butoxide-based insecticide-treated nets in Mozambique. J Infect Dis. 2019. https://doi.org/10.1093/infdis/jiz139.
Article
PubMed
PubMed Central
Google Scholar
Oxborough RM, Seyoum A, Yihdego Y, Dabire R, Gnanguenon V, Wat’Senga F, et al. Susceptibility testing of Anopheles malaria vectors with the neonicotinoid insecticide clothianidin; results from 16 African countries, in preparation for indoor residual spraying with new insecticide formulations. Malar J. 2019. https://doi.org/10.1186/s12936-019-2888-6.
Article
PubMed
PubMed Central
Google Scholar
Magaço A, Botão C, Nhassengo P, Saide M, Ubisse A, Chicumbe S, et al. Community knowledge and acceptance of indoor residual spraying for malaria prevention in Mozambique: a qualitative study. Malar J. 2019. https://doi.org/10.1186/s12936-019-2653-x.
Article
PubMed
PubMed Central
Google Scholar
Arroz JAH, Candrinho B, Mendis C, Lopez M, Martins MDRO. Cost-effectiveness of two long-lasting insecticidal nets delivery models in mass campaign in rural Mozambique. BMC Res Notes. 2019. https://doi.org/10.1186/s13104-019-4620-6.
Article
PubMed
PubMed Central
Google Scholar
Kaddumukasa MA, Wright J, Muleba M, Stevenson JC, Norris DE, Coetzee M. Genetic differentiation and population structure of Anopheles funestus from Uganda and the southern African countries of Malawi, Mozambique, Zambia and Zimbabwe. Parasites Vectors. 2020. https://doi.org/10.1186/s13071-020-3962-1.
Article
PubMed
PubMed Central
Google Scholar
Abílio AP, Obi E, Koenker H, Babalola S, Saifodine A, Zulliger R, et al. Monitoring the durability of the long-lasting insecticidal nets MAGNet and Royal Sentry in three ecological zones of Mozambique. Malar J. 2020. https://doi.org/10.1186/s12936-020-03282-w.
Article
PubMed
PubMed Central
Google Scholar
Galatas B, Saúte F, Martí-Soler H, Guinovart C, Nhamussua L, Simone W, et al. A multiphase program for malaria elimination in southern Mozambique (the Magude project): a before-after study. PLoS Med. 2020. https://doi.org/10.1371/journal.pmed.1003227.
Article
PubMed
PubMed Central
Google Scholar
Wagman JM, Varela K, Zulliger R, Saifodine A, Muthoni R, Magesa S, et al. Reduced exposure to malaria vectors following indoor residual spraying of pirimiphos-methyl in a high-burden district of rural Mozambique with high ownership of long-lasting insecticidal nets: entomological surveillance results from a cluster-randomized trial. Malar J. 2021. https://doi.org/10.1186/s12936-021-03583-8.
Article
PubMed
PubMed Central
Google Scholar
Chaccour C, Zulliger R, Wagman J, Casellas A, Nacima A, Elobolobo E, et al. Incremental impact on malaria incidence following indoor residual spraying in a highly endemic area with high standard ITN access in Mozambique: results from a cluster-randomized study. Malar J. 2021. https://doi.org/10.1186/s12936-021-03611-7.
Article
PubMed
PubMed Central
Google Scholar
Muspratt J. Destruction of the larvae of Anopheles gambiae giles by a Coelomomyces fungus. Bull World Health Organ. 1963;29:81–6.
PubMed
PubMed Central
CAS
Google Scholar
Bransby-Williams WR. House catches of adult Anopheles gambiae species B in two areas of Zambia. East Afr Med J. 1979;56:557–61.
PubMed
CAS
Google Scholar
Ziba MM. Preliminary laboratory trial of Neem on Anopheles and Culex larvae in Zambia. Cent Afr J Med. 1995;41:137–8.
PubMed
CAS
Google Scholar
Lukwa N, Chandiwana SK. Efficacy of mosquito coils containing 0.3% and 0.4% pyrethrins against An. gambiae sensu lato mosquitoes. Cent Afr J. 1998;44:104–7.
CAS
Google Scholar
Sharp B, van Wyk P, Sikasote JB, Banda P, Kleinschmidt I. Malaria control by residual insecticide spraying in Chingola and Chililabombwe, Copperbelt Province, Zambia. TM & IH. 2002. https://doi.org/10.1046/j.1365-3156.2002.00928.x.
Article
Google Scholar
Elphick H, Elphick D. Factors that contribute to the low use of bed nets in a malaria endemic zone of sub-Saharan Africa: a questionnaire survey in a rural population in Zambia. Cent Afr J Med. 2003;49:87–9.
PubMed
CAS
Google Scholar
Kent RJ, Coetzee M, Mharakurwa S, Norris DE. Feeding and indoor resting behaviour of the mosquito Anopheles longipalpis in an area of hyperendemic malaria transmission in southern Zambia. Med Vet Entomol. 2006. https://doi.org/10.1111/j.1365-2915.2006.00646.x.
Article
PubMed
PubMed Central
Google Scholar
Lehmann T, Licht M, Elissa N, Maega BTA, Chimumbwa JM, Watsenga FT, et al. Population structure of Anopheles gambiae in Africa. J Hered. 2003. https://doi.org/10.1093/jhered/esg024.
Article
PubMed
Google Scholar
Baume CA, Marin MC. Intra-household mosquito net use in Ethiopia, Ghana, Mali, Nigeria, Senegal, and Zambia: are nets being used? Who in the household uses them? Am J Trop Med Hyg. 2007;77:963–71.
Article
PubMed
Google Scholar
Kent RJ, Mharakurwa S, Norris DE. Spatial and temporal genetic structure of Anopheles arabiensis in southern Zambia over consecutive wet and drought years. Am J Trop Med Hyg. 2007;77:316.
Article
PubMed
Google Scholar
Kent RJ, Thuma PE, Mharakurwa S, Norris DE. Seasonality, blood feeding behavior, and transmission of Plasmodium falciparum by Anopheles arabiensis after an extended drought in southern Zambia. Am J Trop Med Hyg. 2007;76:267–74.
Article
PubMed
Google Scholar
Baume CA, Marin MC. Gains in awareness, ownership and use of insecticide-treated nets in Nigeria, Senegal, Uganda and Zambia. Malar J. 2008;7:1–10.
Article
Google Scholar
Fornadel CM, Norris LC, Glass GE, Norris DE. Analysis of Anopheles arabiensis blood feeding behavior in southern Zambia during the two years after introduction of insecticide-treated bed nets. Am J Trop Med Hyg. 2010. https://doi.org/10.1186/1475-2875-7-153.
Article
PubMed
PubMed Central
Google Scholar
Clennon JA, Kamanga A, Musapa M, Shiff C, Glass GE. Identifying malaria vector breeding habitats with remote sensing data and terrain-based landscape indices in Zambia. Int J Health Geogr. 2010. https://doi.org/10.1186/1476-072X-9-58.
Article
PubMed
PubMed Central
Google Scholar
Fornadel CM, Norris LC, Norris DE. Centers for disease control light traps for monitoring Anopheles arabiensis human biting rates in an area with low vector density and high insecticide-treated bed net use. Am J Trop Med Hyg. 2010. https://doi.org/10.4269/ajtmh.2010.10-0088.
Article
PubMed
PubMed Central
Google Scholar
Tuba M, Sandoy IF, Bloch P, Byskov J. Fairness and legitimacy of decisions during delivery of malaria services and ITN interventions in Zambia. Malar J. 2010. https://doi.org/10.1186/1475-2875-9-309.
Article
PubMed
PubMed Central
Google Scholar
Norris LC, Fornadel CM, Hung WC, Pineda FJ, Norris DE. Frequency of multiple blood meals taken in a single gonotrophic cycle by Anopheles arabiensis mosquitoes in Macha, Zambia. Am J Trop Med Hyg. 2010. https://doi.org/10.4269/ajtmh.2010.09-0296.
Article
PubMed
PubMed Central
Google Scholar
Fornadel CM, Norris LC, Franco V, Norris DE. Unexpected anthropophily in the potential secondary malaria vectors Anopheles coustani s.l. and Anopheles squamosus in Macha, Zambia. Vector Borne Zoonotic Dis. 2011. https://doi.org/10.1089/vbz.2010.0082.
Article
PubMed
PubMed Central
Google Scholar
Norris LC, Norris DE. Efficacy of long-lasting insecticidal nets in use in Macha, Zambia, against the local Anopheles arabiensis population. Malar J. 2011. https://doi.org/10.1186/1475-2875-10-254.
Article
PubMed
PubMed Central
Google Scholar
Chanda E, Hemingway J, Kleinschmidt I, Rehman AM, Ramdeen V, Phiri FN, et al. Insecticide resistance and the future of malaria control in Zambia. PLoS ONE. 2011. https://doi.org/10.1371/journal.pone.0024336.
Article
PubMed
PubMed Central
Google Scholar
Chanda E, Baboo KS, Shinondo CJ. Transmission attributes of periurban malaria in Lusaka, Zambia, precedent to the integrated vector management strategy: an entomological input. J Trop Med. 2012. https://doi.org/10.1155/2012/873852.
Article
PubMed
PubMed Central
Google Scholar
Seyoum A, Sikaala CH, Chanda J, Chinula D, Ntamatungiro AJ, Hawela M, et al. Human exposure to anopheline mosquitoes occurs primarily indoors, even for users of insecticide-treated nets in Luangwa Valley, South-east Zambia. Parasites Vectors. 2012. https://doi.org/10.1186/1756-3305-5-101.
Article
PubMed
PubMed Central
Google Scholar
Chanda E, Coleman M, Kleinschmidt I, Hemingway J, Hamainza B, Masaninga F, et al. Impact assessment of malaria vector control using routine surveillance data in Zambia: implications for monitoring and evaluation. Malar J. 2012. https://doi.org/10.1186/1475-2875-11-437.
Article
PubMed
PubMed Central
Google Scholar
Mharakurwa S, Sialumano M, Liu K, Scott A, Thuma P. Selection for chloroquine-sensitive Plasmodium falciparum by wild Anopheles arabiensis in southern Zambia. Malar J. 2013. https://doi.org/10.1186/1475-2875-12-453.
Article
PubMed
PubMed Central
Google Scholar
Chanda E, Kandyata A, Chanda J, Phiri FN, Muzia L, Kamuliwo M. The efficacy of vectron 20 WP, etofenprox, for indoor residual spraying in areas of high vector resistance to pyrethroids and organochlorines in Zambia. Prev Med. 2013. https://doi.org/10.5402/2013/371934.
Article
Google Scholar
Chanda E, Chanda J, Kandyata A, Phiri FN, Muzia L, Haque U, et al. Efficacy of ACTELLIC 300 CS, pirimiphos methyl, for indoor residual spraying in areas of high vector resistance to pyrethroids and carbamates in Zambia. J Med Entomol. 2013. https://doi.org/10.1603/ME13041.
Article
PubMed
Google Scholar
Sikaala CH, Killeen GF, Chanda J, Chinula D, Miller JM, Russell TL, et al. Evaluation of alternative mosquito sampling methods for malaria vectors in Lowland South–East Zambia. Parasites Vectors. 2013. https://doi.org/10.1186/1756-3305-6-91.
Article
PubMed
PubMed Central
Google Scholar
Kamuliwo M, Chanda E, Haque U, Mwanza-Ingwe M, Sikaala C, Katebe-Sakala C, et al. The changing burden of malaria and association with vector control interventions in Zambia using district-level surveillance data, 2006–2011. Malar J. 2013. https://doi.org/10.1186/1475-2875-12-437.
Article
PubMed
PubMed Central
Google Scholar
Norris LC, Norris DE. Heterogeneity and changes in inequality of malaria risk after introduction of insecticide-treated bed nets in Macha, Zambia. Am J Trop Med Hyg. 2013. https://doi.org/10.4269/ajtmh.11-0595.
Article
PubMed
PubMed Central
Google Scholar
Choi KS, Christian R, Nardini L, Wood OR, Agubuzo E, Muleba M, et al. Insecticide resistance and role in malaria transmission of Anopheles funestus populations from Zambia and Zimbabwe. Parasites Vectors. 2014. https://doi.org/10.1186/s13071-014-0464-z.
Article
PubMed
PubMed Central
Google Scholar
Thomsen EK, Strode C, Hemmings K, Hughes AJ, Chanda E, Musapa M, et al. Underpinning sustainable vector control through informed insecticide resistance management. PLoS ONE. 2014. https://doi.org/10.1371/journal.pone.0099822.
Article
PubMed
PubMed Central
Google Scholar
Fornadel CM, Norris DE. Increased endophily by the malaria vector Anopheles arabiensis in southern Zambia and identification of digested blood meals. Am J Trop Med Hyg. 2008;79:876–80.
Article
PubMed
CAS
Google Scholar
Mukonka VM, Chanda E, Haque U, Kamuliwo M, Mushinge G, Chileshe J, et al. High burden of malaria following scale-up of control interventions in Nchelenge District, Luapula Province, Zambia. Malar J. 2014. https://doi.org/10.1186/1475-2875-13-153.
Article
PubMed
PubMed Central
Google Scholar
Sikaala CH, Chinula D, Chanda J, Hamainza B, Mwenda M, Mukali I, et al. A cost-effective, community-based, mosquito-trapping scheme that captures spatial and temporal heterogeneities of malaria transmission in rural Zambia. Malar J. 2014. https://doi.org/10.1186/1475-2875-13-225.
Article
PubMed
PubMed Central
Google Scholar
Lobo NF, St. Laurent B, Sikaala CH, Hamainza B, Chanda J, Chinula D, et al. Unexpected diversity of Anopheles species in Eastern Zambia: implications for evaluating vector behavior and interventions using molecular tools. Sci Rep. 2015. https://doi.org/10.1038/srep17952.
Article
PubMed
PubMed Central
Google Scholar
Das S, Henning TC, Simubali L, Hamapumbu H, Nzira L, Mamini E, et al. Underestimation of foraging behaviour by standard field methods in malaria vector mosquitoes in southern Africa. Malar J. 2015. https://doi.org/10.1186/s12936-014-0527-9.
Article
PubMed
PubMed Central
Google Scholar
Craig AS, Muleba M, Smith SC, Katebe-Sakala C, Chongwe G, Hamainza B, et al. Long-lasting insecticidal nets in Zambia: a cross-sectional analysis of net integrity and insecticide content. Malar J. 2015. https://doi.org/10.1186/s12936-015-0754-8.
Article
PubMed
PubMed Central
Google Scholar
Stevenson JC, Pinchoff J, Muleba M, Lupiya J, Chilusu H, Mwelwa I, et al. Spatio-temporal heterogeneity of malaria vectors in northern Zambia: implications for vector control. Parasites Vectors. 2016. https://doi.org/10.1186/s13071-016-1786-9.
Article
PubMed
PubMed Central
Google Scholar
Das S, Muleba M, Stevenson JC, Norris DE. Habitat partitioning of malaria vectors in Nchelenge district, Zambia. Am J Trop Med Hyg. 2016. https://doi.org/10.4269/ajtmh.15-0735.
Article
PubMed
PubMed Central
Google Scholar
Stevenson JC, Simubali L, Mbambara S, Musonda M, Mweetwa S, Mudenda T, et al. Detection of Plasmodium falciparum infection in Anopheles squamosus (Diptera: Culicidae) in an area targeted for malaria elimination, Southern Zambia. J Med Entomol. 2016. https://doi.org/10.1093/jme/tjw091.
Article
PubMed
PubMed Central
Google Scholar
Hamainza B, Sikaala CH, Moonga HB, Chanda J, Chinula D, Mwenda M, et al. Incremental impact upon malaria transmission of supplementing pyrethroid-impregnated long-lasting insecticidal nets with indoor residual spraying using pyrethroids or the organophosphate, pirimiphos methyl. Malar J. 2016. https://doi.org/10.1186/s12936-016-1143-7.
Article
PubMed
PubMed Central
Google Scholar
Wang P, Connor AL, Joudeh AS, Steinberg J, Ndhlovu K, Siyolwe M, et al. Community point distribution of insecticide-treated bed nets and community health worker hang-up visits in rural Zambia: a decision-focused evaluation. Malar J. 2016. https://doi.org/10.1186/s12936-016-1165-1.
Article
PubMed
PubMed Central
Google Scholar
Das S, Muleba M, Stevenson JC, Pringle JC, Norris DE. Beyond the entomological inoculation rate: characterizing multiple blood feeding behavior and Plasmodium falciparum multiplicity of infection in Anopheles mosquitoes in northern Zambia. Parasites Vectors. 2017. https://doi.org/10.1186/s13071-017-1993-z.
Article
PubMed
PubMed Central
Google Scholar
Chinula D, Sikaala CH, Chanda-Kapata P, Hamainza B, Zulu R, Reimer L, et al. Wash-resistance of pirimiphos-methyl insecticide treatments of window screens and eave baffles for killing indoor-feeding malaria vector mosquitoes: an experimental hut trial, South East of Zambia. Malar J. 2018. https://doi.org/10.1186/s12936-018-2309-2.
Article
PubMed
PubMed Central
Google Scholar
Stevenson JC, Simubali L, Mudenda T, Cardol E, Bernier UR, Vazquez AA, et al. Controlled release spatial repellent devices (CRDs) as novel tools against malaria transmission: a semi-field study in Macha, Zambia. Malar J. 2018. https://doi.org/10.1186/s12936-018-2558-0.
Article
PubMed
PubMed Central
Google Scholar
Jones CM, Lee Y, Kitchen A, Collier T, Pringle JC, Muleba M, et al. Complete Anopheles funestus mitogenomes reveal an ancient history of mitochondrial lineages and their distribution in southern and central Africa. Sci Rep. 2018. https://doi.org/10.1038/s41598-018-27092-y.
Article
PubMed
PubMed Central
Google Scholar
Dengela D, Seyoum A, Lucas B, Johns B, George K, Belemvire A, et al. Multi-country assessment of residual bio-efficacy of insecticides used for indoor residual spraying in malaria control on different surface types: results from program monitoring in 17 PMI/USAID-supported IRS countries. Parasites Vectors. 2018. https://doi.org/10.1186/s13071-017-2608-4.
Article
PubMed
PubMed Central
Google Scholar
Kanyangarara M, Hamapumbu H, Mamini E, Lupiya J, Stevenson JC, Mharakurwa S, et al. Malaria knowledge and bed net use in three transmission settings in southern Africa. Malar J. 2018. https://doi.org/10.1186/s12936-018-2178-8.
Article
PubMed
PubMed Central
Google Scholar
Hast MA, Stevenson JC, Muleba M, Chaponda M, Kabuya JB, Mulenga M, et al. Risk factors for household vector abundance using indoor CDC light traps in a high malaria transmission area of northern Zambia. Am J Trop Med Hyg. 2019. https://doi.org/10.4269/ajtmh.18-0875.
Article
PubMed
PubMed Central
Google Scholar
Hast MA, Chaponda M, Muleba M, Kabuya JB, Lupiya J, Kobayashi T, et al. The impact of 3 years of targeted indoor residual spraying with pirimiphos-methyl on malaria parasite prevalence in a high-transmission area of northern Zambia. Am J Epidemiol. 2019. https://doi.org/10.1093/aje/kwz107.
Article
PubMed
PubMed Central
Google Scholar
Ciubotariu II, Jones CM, Kobayashi T, Bobanga T, Muleba M, Pringle JC, et al. Genetic diversity of Anopheles coustani (Diptera: Culicidae) in malaria transmission foci in southern and central Africa. J Med Entomol. 2020. https://doi.org/10.1093/jme/tjaa132.
Article
PubMed
PubMed Central
Google Scholar
Chanda J, Saili K, Phiri F, Stevenson JC, Mwenda M, Chishimba S, et al. Pyrethroid and carbamate resistance in Anopheles funestus Giles along Lake Kariba in southern Zambia. Am J Trop Med Hyg. 2020. https://doi.org/10.4269/ajtmh.19-0664.
Article
PubMed
PubMed Central
Google Scholar
Jumbam DT, Stevenson JC, Matoba J, Grieco JP, Ahern LN, Hamainza B, et al. Knowledge, attitudes and practices assessment of malaria interventions in rural Zambia. BMC Public Health. 2020. https://doi.org/10.1186/s12889-020-8235-6.
Article
PubMed
PubMed Central
Google Scholar
Larsen DA, Martin A, Pollard D, Nielsen CF, Hamainza B, Burns M, et al. Leveraging risk maps of malaria vector abundance to guide control efforts reduces malaria incidence in Eastern Province, Zambia. Sci Rep. 2020. https://doi.org/10.1038/s41598-020-66968-w.
Article
PubMed
PubMed Central
Google Scholar
Cross DE, Thomas C, McKeown N, Siaziyu V, Healey A, Willis T, et al. Geographically extensive larval surveys reveal an unexpected scarcity of primary vector mosquitoes in a region of persistent malaria transmission in western Zambia. Parasites Vectors. 2021. https://doi.org/10.1186/s13071-020-04540-1.
Article
PubMed
PubMed Central
Google Scholar
Hoffman JE, Ciubotariu II, Simubali L, Mudenda T, Moss WJ, Carpi G, et al. Phylogenetic complexity of morphologically identified anopheles squamosus in southern Zambia. Insects. 2021. https://doi.org/10.3390/insects12020146.
Article
PubMed
PubMed Central
Google Scholar
Hast MA, Stevenson JC, Muleba M, Chaponda M, Kabuya JB, Mulenga M, et al. The impact of three years of targeted indoor residual spraying with pirimiphos-methyl on household vector abundance in a high malaria transmission area of northern Zambia. Am J Trop Med Hyg. 2021. https://doi.org/10.4269/ajtmh.20-0537.
Article
Google Scholar
Green CA. Identifications of member species of the Anopheles gambiae complex in the Zambesi valley. Cent Afr J Med. 1970;16:207–9.
PubMed
CAS
Google Scholar
Mpofu SM. Seasonal vector density and disease incidence patterns of malaria in an area of Zimbabwe. Trans R Soc Trop Med Hyg. 1985;79:169–75.
Article
PubMed
CAS
Google Scholar
Taylor P, Govere J, Crees MJ. A field trial of microencapsulated deltamethrin, a synthetic pyrethroid, for malaria control. Trans R Soc Trop Med Hyg. 1986;80:537–45.
Article
PubMed
CAS
Google Scholar
Mpofu SM, Kanyimo KH, Masendu H. Potential use of bendiocarb (Ficam VC) for malaria control in an area of Zimbabwe. J Am Mosq Control Assoc. 1991;7:536–42.
PubMed
CAS
Google Scholar
Murahwa FC, Lukwa N, Govere JM, Masedza C. Do mosquito coils and killer sticks work against Anopheles gambiae sensu lato mosquitoes in Zimbabwe? Cent Afr J Med. 1994;40:122–6.
PubMed
CAS
Google Scholar
Lukwa N. Do traditional mosquito repellent plants work as mosquito larvicides? Cent Afr J Med. 1994;40:306–9.
PubMed
CAS
Google Scholar
van Geldermalsen AA, Munochiveyi R. Knowledge, attitude and practice (KAP) relating to malaria in Mashonaland Central, Zimbabwe. Cent Afr J Med. 1995;41:10–4.
PubMed
Google Scholar
Vundule C, Mharakurwa S. Knowledge, practices, and perceptions about malaria in rural communities of Zimbabwe: relevance to malaria control. Bull World Health Organ. 1996;74:55–60.
PubMed
PubMed Central
CAS
Google Scholar
Mpofu SM, Taylor P, Govere J. An evaluation of the residual lifespan of DDT in malaria control. J Am Mosq Control Assoc. 1988;4:529–35.
PubMed
CAS
Google Scholar
Lukwa N, Nyazema NZ, Curtis CF, Mwaiko GL, Chandiwana SK. People’s perceptions about malaria transmission and control using mosquito repellent plants in a locality in Zimbabwe. Cent Afr J Med. 1999. https://doi.org/10.4314/cajm.v45i3.8456.
Article
PubMed
Google Scholar
Manokore V, Murahwa FC, Chirebvu E. Absence of insecticide resistance in Anopheles gambiae s.l. (Diptera: Culicidae) after four decades of residual house spraying in Gokwe District, Zimbabwe. J Med Entomol. 2000. https://doi.org/10.1603/0022-2585-37.2.286.
Article
PubMed
Google Scholar
Masendu HT, McClean D, Mushavave ST, Chinyowa D, Simbanegavi P, Chawarika C, et al. Urban malaria transmission in Mutare City; an unlikely phenomenon. Cent Afr J Med. 2000. https://doi.org/10.1603/0022-2585-37.2.286.
Article
PubMed
Google Scholar
Chirebvu E, Nzira L. The efficacy and residual life span of two alphacypermethrin insecticide formulations (fendona 6% suspension concentrate and fendona dry 15%) treated on mosquito bed nets. Cent Afr J Med. 2000. https://doi.org/10.4314/cajm.v46i7.8555.
Article
PubMed
Google Scholar
Tsuyuoka R, Midzi SM, Dziva P, Makunike B. The acceptability of insecticide treated mosquito nets among community members in Zimbabwe. Cent Afr J Med. 2002. https://doi.org/10.4314/cajm.v48i7.8435.
Article
PubMed
Google Scholar
Masendu HT, Nziramasanga N, Muchechemera C. Low insecticide deposit rates detected during routine indoor residual spraying for malaria vector control in two districts of Gokwe, Zimbabwe. J Am Mosq Control Assoc. 2002. https://doi.org/10.4314/cajm.v48i7.8435.
Article
PubMed
Google Scholar
Masendu HT, Hunt RH, Govere J, Brooke BD, Awolola TS, Coetzee M. The sympatric occurrence of two molecular forms of the malaria vector Anopheles gambiae Giles sensu stricto in Kanyemba, in the Zambezi Valley, Zimbabwe. Trans R Soc Trop Med Hyg. 2004. https://doi.org/10.1016/j.trstmh.2003.10.006.
Article
PubMed
Google Scholar
Munhenga G, Masendu HT, Brooke BD, Hunt RH, Koekemoer LK. Pyrethroid resistance in the major malaria vector Anopheles arabiensis from Gwave, a malaria-endemic area in Zimbabwe. Malar J. 2008. https://doi.org/10.1186/1475-2875-7-247.
Article
PubMed
PubMed Central
Google Scholar
Lukwa N, Chiwade T. Lack of insecticidal effect of mosquito coils containing either metofluthrin or esbiothrin on Anopheles gambiae sensu lato mosquitoes. Trop Biomed. 2008;25:191–5.
PubMed
Google Scholar
Torr SJ, della Torre A, Calzetta M, Costantini C, Vale GA. Towards a fuller understanding of mosquito behaviour: use of electrocuting grids to compare the odour-orientated responses of Anopheles arabiensis and An. quadriannulatus in the field. Med Vet Entomol. 2008. https://doi.org/10.1111/j.1365-2915.2008.00723.x.
Article
PubMed
Google Scholar
Sande S, Jagals P, Mupeta B, Chadambuka A. An investigation of the use of rectangular insecticide-treated nets for malaria control in Chipinge district, Zimbabwe: a descriptive study. Pan Afr Med J. 2012;13:5.
PubMed
PubMed Central
Google Scholar
Lukwa N, Sande S, Makuwaza A, Chiwade T, Netsa M, Asamoa K, et al. Nationwide assessment of insecticide susceptibility in Anopheles gambiae populations from Zimbabwe. Malar J. 2014. https://doi.org/10.1186/1475-2875-13-408.
Article
PubMed
PubMed Central
Google Scholar
Sande S, Zimba M, Chinwada P, Masendu HT, Mazando S, Makuwaza A. The emergence of insecticide resistance in the major malaria vector Anopheles funestus (Diptera: Culicidae) from sentinel sites in Mutare and Mutasa Districts, Zimbabwe. Malar J. 2015. https://doi.org/10.1186/s12936-015-0993-8.
Article
PubMed
PubMed Central
Google Scholar
Sande S, Zimba M, Chinwada P, Masendu HT, Makuwaza A. Biting behaviour of Anopheles funestus populations in Mutare and Mutasa districts, Manicaland province, Zimbabwe: implications for the malaria control programme. J Vector Borne Dis. 2016;53:789–96.
Google Scholar
Sande S, Zimba M, Chinwada P, Masendu HT, Makuwaza A. Insights into resting behavior of malaria vector mosquitoes in Mutare and Mutasa Districts of Manicaland Province, Zimbabwe. J Med Entomol. 2016;53:866–72.
Article
PubMed
CAS
Google Scholar
Kanyangarara M, Mamini E, Mharakurwa S, Munyati S, Gwanzura L, Kobayashi T, et al. Reduction in malaria incidence following indoor residual spraying with actellic 300 CS in a setting with pyrethroid resistance: Mutasa District, Zimbabwe. PLoS ONE. 2016. https://doi.org/10.1371/journal.pone.0151971.
Article
PubMed
PubMed Central
Google Scholar
Tapera O. Determinants of long-lasting insecticidal net ownership and utilization in malaria transmission regions: evidence from Zimbabwe demographic and health surveys. Malar J. 2019. https://doi.org/10.1186/s12936-019-2912-x.
Article
PubMed
PubMed Central
Google Scholar
Dube B, Mberikunashe J, Dhliwayo P, Tangwena A, Shambira G, Chimusoro A, et al. How far is the journey before malaria is knocked out malaria in Zimbabwe: results of the malaria indicator survey 2016. Malar J. 2019. https://doi.org/10.1186/s12936-019-2801-3.
Article
PubMed
PubMed Central
Google Scholar
Higgs S, Beaty BJ. Natural cycles of vector-borne pathogens. The biology of disease vectors. Colorado: University Press of Colorado; 2005.
Google Scholar
Beier JC. Vector incrimination and entomological inoculation rates. Methods Mol Med. 2002.
Gimmg JE, Ombok M, Kamau L, Hawley WA. Characteristics of larval anopheline (Diptera: Culicidae) habitats in western Kenya. J Med Entomol. 2001. https://doi.org/10.1603/0022-2585-38.2.282.
Article
Google Scholar
Li L, Bian L, Yan G. A study of the distribution and abundance of the adult malaria vector in western Kenya highlands. Int J Health Geogr. 2008. https://doi.org/10.1186/1476-072X-7-50.
Article
PubMed
PubMed Central
Google Scholar
Nambunga IH, Ngowo HS, Mapua SA, Hape EE, Msugupakulya BJ, Msaky DS, et al. Aquatic habitats of the malaria vector Anopheles funestus in rural south-eastern Tanzania. Malar J. 2020. https://doi.org/10.1186/s12936-020-03295-5.
Article
PubMed
PubMed Central
Google Scholar
Mburu MM. Indoor and outdoor biting behaviour of malaria vectors and the potential risk factors that enhance malaria in southern Malawi. Thesis. Wageningen University & Research. 2019.
Rozendaal JA. Mosquitos and other biting Diptera. Vector control: methods for use by individuals and communities. World Health Organization; 1997. https://apps.who.int/iris/handle/10665/41968.
Wilson AL, Courtenay O, Kelly-Hope LA, Scott TW, Takken W, Torr SJ, et al. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl Trop Dis. 2020. https://doi.org/10.1371/journal.pntd.0007831.
Article
PubMed
PubMed Central
Google Scholar
Killeen GF. Characterizing, controlling and eliminating residual malaria transmission. Malar J. 2014. https://doi.org/10.1186/1475-2875-13-330.
Article
PubMed
PubMed Central
Google Scholar
Burke A, Dahan-Moss Y, Duncan F, Qwabe B, Coetzee M, Koekemoer L, et al. Anopheles parensis contributes to residual malaria transmission in South Africa. Malar J. 2019. https://doi.org/10.1186/s12936-019-2889-5.
Article
PubMed
PubMed Central
Google Scholar
Perugini E, Guelbeogo WM, Calzetta M, Manzi S, Virgillito C, Caputo B, et al. Behavioural plasticity of Anopheles coluzzii and Anopheles arabiensis undermines LLIN community protective effect in a Sudanese-savannah village in Burkina Faso. Parasites Vectors. 2020. https://doi.org/10.1186/s13071-020-04142-x.
Article
PubMed
PubMed Central
Google Scholar
Gordicho V, Vicente JL, Sousa CA, Caputo B, Pombi M, Dinis J, et al. First report of an exophilic Anopheles arabiensis population in Bissau City, Guinea-Bissau: recent introduction or sampling bias? Malar J. 2014. https://doi.org/10.1186/1475-2875-13-423.
Article
PubMed
PubMed Central
Google Scholar
Moiroux N, Gomez MB, Pennetier C, Elanga E, Djènontin A, Chandre F, et al. Changes in Anopheles funestus biting behavior following universal coverage of long-lasting insecticidal nets in Benin. J Infect Dis. 2012. https://doi.org/10.1093/infdis/jis565.
Article
PubMed
Google Scholar
Ojuka P, Boum Y, Denoeud-Ndam L, Nabasumba C, Muller Y, Okia M, et al. Early biting and insecticide resistance in the malaria vector Anopheles might compromise the effectiveness of vector control intervention in Southwestern Uganda. Malar J. 2015. https://doi.org/10.1186/s12936-015-0653-z.
Article
PubMed
PubMed Central
Google Scholar
Kabbale FG, Akol AM, Kaddu JB, Onapa AW. Biting patterns and seasonality of Anopheles gambiae sensu lato and Anopheles funestus mosquitoes in Kamuli District, Uganda. Parasites Vectors. 2013. https://doi.org/10.1186/1756-3305-6-340.
Article
PubMed
PubMed Central
Google Scholar
Dambach P, Schleicher M, Korir P, Ouedraogo S, Dambach J, Sié A, et al. Nightly biting cycles of Anopheles species in rural northwestern Burkina Faso. J Med Entomol. 2018. https://doi.org/10.1093/jme/tjy043.
Article
PubMed
PubMed Central
Google Scholar
Kipruto EK, Ochieng AO, Anyona DN, Mbalanya M, Mutua EN, Onguru D, et al. Effect of climatic variability on malaria trends in Baringo County, Kenya. Malar J. 2017. https://doi.org/10.1186/s12936-017-1848-2.
Article
PubMed
PubMed Central
Google Scholar
Shililu J, Ghebremeskel T, Seulu F, Mengistu S, Fekadu H, Zerom M, et al. Seasonal abundance, vector behavior, and malaria parasite transmission in Eritrea. J Am Mosq Control Assoc. 2004;20:155–60.
PubMed
Google Scholar
Mawejje HD, Kilama M, Kigozi SP, Musiime AK, Kamya M, Lines J, et al. Impact of seasonality and malaria control interventions on Anopheles density and species composition from three areas of Uganda with differing malaria endemicity. Malar J. 2021. https://doi.org/10.1186/s12936-021-03675-5.
Article
PubMed
PubMed Central
Google Scholar
Tangena JAA, Hendriks CMJ, Devine M, Tammaro M, Trett AE, Williams I, et al. Indoor residual spraying for malaria control in sub-Saharan Africa 1997 to 2017: an adjusted retrospective analysis. Malar J. 2020. https://doi.org/10.1186/s12936-020-03216-6.
Article
PubMed
PubMed Central
Google Scholar
Fitzgerald L, Wikoff DS. Persistent organic pollutants. In: Encyclopedia of toxicology. 3rd ed. London: Academic Press; 2014.
Google Scholar
vandenBilcke C. The Stockholm convention on persistent organic pollutants. Rev Eur Community Int Environ Law. 2002. https://doi.org/10.1111/1467-9388.00331.
Article
Google Scholar
WHO. Larval source management: a supplementary measure for malaria vector control. An operational manual. Geneva: World Health Organization; 2013.
Google Scholar
Utzinger J, Tozan Y, Singer BH. Efficacy and cost-effectiveness of environmental management for malaria control. Trop Med Int Health. 2001. https://doi.org/10.1046/j.1365-3156.2001.00769.x.
Article
PubMed
Google Scholar
Mwangangi JM, Kahindi SC, Kibe LW, Nzovu JG, Luethy P, Githure JI, et al. Wide-scale application of Bti/Bs biolarvicide in different aquatic habitat types in urban and peri-urban Malindi, Kenya. Parasitol Res. 2011. https://doi.org/10.1007/s00436-010-2029-1.
Article
PubMed
Google Scholar
Diédhiou SM, Konaté L, Samb B, Niang EA, Sy O, Thiaw O, et al. Effectiveness of three biological larvicides and of an insect growth regulator against Anopheles arabiensis in Senegal. Bull Soc Pathol Exot. 2017. https://doi.org/10.1007/s13149-016-0531-4.
Article
PubMed
Google Scholar
Ingabire CM, Hakizimana E, Rulisa A, Kateera F, van den Borne B, Muvunyi CM, et al. Community-based biological control of malaria mosquitoes using Bacillus thuringiensis var. israelensis (Bti) in Rwanda: community awareness, acceptance and participation. Malar J. 2017. https://doi.org/10.1186/s12936-017-2046-y.
Article
PubMed
PubMed Central
Google Scholar
Shililu JI, Tewolde GM, Brantly E, Githure JI, Mbogo CM, Beier JC, et al. Efficacy of Bacillus thuringiensis israelensis, Bacillus sphaericus and temephos for managing Anopheles larvae in Eritrea. J Am Mosq Control Assoc. 2003;19:251–8.
PubMed
CAS
Google Scholar
Fillinger U, Knols BG, Becker N. Efficacy and efficiency of new Bacillus thuringiensis var israelensis and Bacillus sphaericus formulations against Afrotropical anophelines in western Kenya. Trop Med Int Health. 2003. https://doi.org/10.1046/j.1365-3156.2003.00979.x.
Article
PubMed
Google Scholar
Romi R, Ravoniharimelina B, Ramiakajato M, Majori G. Field trials of Bacillus thuringiensis H-14 and Bacillus sphaericus (strain 2362) formulations against Anopheles arabiensis in the central highlands of Madagascar. J Am Mosq Control Assoc. 1993;93:325–9.
Google Scholar
Dambach P, Louis VR, Kaiser A, Ouedraogo S, Sié A, Sauerborn R, et al. Efficacy of Bacillus thuringiensis var. israelensis against malaria mosquitoes in northwestern Burkina Faso. Parasites Vectors. 2014. https://doi.org/10.1186/1756-3305-7-371.
Article
PubMed
PubMed Central
Google Scholar
Barbazan P, Baldet T, Darriet F, Escaffre H, Djoda DH, Hougard JM. Impact of treatments with Bacillus sphaericus on Anopheles populations and the transmission of malaria in Maroua, a large city in a savannah region of Cameroon. J Am Mosq Control Assoc. 1998;14:33–9.
PubMed
CAS
Google Scholar
Casimiro S, Coleman M, Mohloai P, Hemingway J, Sharp B. Insecticide resistance in Anopheles funestus (Diptera: Culicidae) from Mozambique. J Med Entomol. 2006;43:267–75.
Article
PubMed
CAS
Google Scholar
Mnzava AP, Knox TB, Temu EA, Trett A, Fornadel C, Hemingway J, et al. Implementation of the global plan for insecticide resistance management in malaria vectors: progress, challenges and the way forward. Malar J. 2015. https://doi.org/10.1186/s12936-015-0693-4.
Article
PubMed
PubMed Central
Google Scholar
Mahande A, Mosha F, Mahande J, Kweka E. Feeding and resting behaviour of malaria vector, Anopheles arabiensis with reference to zooprophylaxis. Malar J. 2007. https://doi.org/10.1186/1475-2875-6-100.
Article
PubMed
PubMed Central
Google Scholar
Lengeler C. Insecticide-treated bed nets and curtains for preventing malaria. Cochrane Database Syst Rev. 2004. https://doi.org/10.1002/14651858.CD000363.pub2.
Article
PubMed
Google Scholar
Akogbéto MC, Dagnon F, Aïkpon R, Ossé R, Salako AS, Ahogni I, et al. Lessons learned, challenges and outlooks for decision-making after a decade of experience monitoring the impact of indoor residual spraying in Benin, West Africa. Malar J. 2020. https://doi.org/10.1186/s12936-020-3131-1.
Article
PubMed
PubMed Central
Google Scholar
The Vector Control Advisory Group. Third meeting of the Vector Control Advisory Group. The Vector Control Advisory Group, Geneva, Switzerland 12–14 November 2014. 2015
Gimnig JE, Slutsker L. House screening for malaria control. Lancet. 2009. https://doi.org/10.1016/S0140-6736(09)61078-3.
Article
PubMed
Google Scholar
Getawen SK, Ashine T, Massebo F, Woldeyes D, Lindtjørn B. Exploring the impact of house screening intervention on entomological indices and incidence of malaria in Arba Minch town, southwest Ethiopia: a randomized control trial. Acta Trop. 2018. https://doi.org/10.1016/j.actatropica.2018.02.009.
Article
PubMed
Google Scholar
Ls T, Thwing J, Sinclair D, Fillinger U, Gimnig J, Ke B, et al. Mosquito larval source management for controlling malaria (Review). Cochrane Database Syst Rev. 2016. https://doi.org/10.1002/14651858.CD008923.pub2.
Article
Google Scholar