WHO. World malaria report 2021. Geneva: World Health Organization; 2021.
Google Scholar
WHO. High burden to high impact: a targeted malaria response. Geneva: World Health Organization; 2018.
Google Scholar
Ministry of Health, Malaria Control Programme. The Uganda Malaria Reduction Strategic Plan 2014–2020. Kampala, Uganda; 2014. http://library.health.go.ug/sites/default/files/resources/The%20Uganda%20Malaria%20Reduction%20Strategic%20Plan%202014-2020.pdf.
Uganda National Malaria Control Division, Uganda Bureau of Statistics, ICF. 2018–19 Uganda malaria indicator survey (UMIS): Atlas of key indicators. Kampala, Uganda, Rockville, USA, 2020. https://dhsprogram.com/pubs/pdf/ATR21/ATR21.pdf.
Sinka ME, Bangs MJ, Manguin S, Rubio-Palis Y, Chareonviriyaphap T, Coetzee M, et al. A global map of dominant malaria vectors. Parasit Vectors. 2012;5:69.
Article
Google Scholar
Bhatt S, Weiss D, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11.
Article
CAS
Google Scholar
Mboera L. Sampling techniques for adult Afrotropical malaria vectors and their reliability in the estimation of entomological inoculation rate. Tanzania J Health Res. 2005;7:117–24.
CAS
Google Scholar
Tirados I, Costantini C, Gibson G, Torr SJ. Blood-feeding behaviour of the malarial mosquito Anopheles arabiensis: implications for vector control. Med Vet Entomol. 2006;20:425–37.
Article
CAS
Google Scholar
Wong J, Bayoh N, Olang G, Killeen GF, Hamel MJ, Vulule JM, Gimnig JE. Standardizing operational vector sampling techniques for measuring malaria transmission intensity: evaluation of six mosquito collection methods in western Kenya. Malar J. 2013;12:143.
Article
Google Scholar
Briët OJ, Huho BJ, Gimnig JE, Bayoh N, Seyoum A, Sikaala CH, et al. Applications and limitations of centers for disease control and prevention miniature light traps for measuring biting densities of African malaria vector populations: a pooled-analysis of 13 comparisons with human landing catches. Malar J. 2015;14:247.
Article
Google Scholar
WHO. Manual on practical entomology in malaria. Geneva: World Health Organization; 1975.
Google Scholar
Service M. A critical-review of procedures for sampling populations of adult mosquitos. Bull Entomol Res. 1977;67:343–82.
Article
Google Scholar
Gimnig JE, Walker ED, Otieno P, Kosgei J, Olang G, Ombok M, et al. Incidence of malaria among mosquito collectors conducting human landing catches in western Kenya. Am J Trop Med Hyg. 2013;88:301.
Article
Google Scholar
Onori E, Grab B. Indicators for the forecasting of malaria epidemics. Bull World Health Organ. 1980;58:91–8.
CAS
Google Scholar
Davey T, Gordon R. The estimation of the density of infective anophelines as a method of calculating the relative risk of inoculation with malaria from different species or in different localities. Ann Trop Med Parasitol. 1933;27:27–52.
Article
Google Scholar
WHO. Malaria entomology and vector control (Learner’s Guide). Geneva: World Health Organization; 2003.
Google Scholar
Fornadel CM, Norris LC, Norris DE. Centers for disease control light traps for monitoring Anopheles arabiensis human biting rates in an area with low vector density and high insecticide-treated bed net use. Am J Trop Med Hyg. 2010;83:838–42.
Article
Google Scholar
Costantini C, Sagnon N, Sanogo E, Merzagora L, Coluzzi M. Relationship to human biting collections and influence of light and bednet in CDC light-trap catches of West African malaria vectors. Bull Entomol Res. 1998;88:503–11.
Article
Google Scholar
Maia MF, Robinson A, John A, Mgando J, Simfukwe E, Moore SJ. Comparison of the CDC Backpack aspirator and the Prokopack aspirator for sampling indoor-and outdoor-resting mosquitoes in southern Tanzania. Parasit Vectors. 2011;4:124.
Article
Google Scholar
Muirhead-Thomson R. A pit shelter for sampling outdoor mosquito populations. Bull World Health Organ. 1958;19:1116–8.
CAS
Google Scholar
Lines J, Curtis C, Wilkes T, Njunwa K. Monitoring human-biting mosquitoes (Diptera: Culicidae) in Tanzania with light-traps hung beside mosquito nets. Bull Entomol Res. 1991;81:77–84.
Article
Google Scholar
Ndiath MO, Mazenot C, Gaye A, Konate L, Bouganali C, Faye O, et al. Methods to collect Anopheles mosquitoes and evaluate malaria transmission: a comparative study in two villages in Senegal. Malar J. 2011;10:270.
Article
Google Scholar
Kilama M, Smith DL, Hutchinson R, Kigozi R, Yeka A, Lavoy G, et al. Estimating the annual entomological inoculation rate for Plasmodium falciparum transmitted by Anopheles gambiae s.l. using three sampling methods in three sites in Uganda. Malar J. 2014;13:111.
Article
Google Scholar
Davis JR, Hall T, Chee EM, Majala A, Minjas J, Shiff CJ. Comparison of sampling anopheline mosquitoes by light-trap and human-bait collections indoors at Bagamoyo. Tanzania Med Vet Entomol. 1995;9:249–55.
Article
CAS
Google Scholar
Mbogo CN, Glass GE, Forster D, Kabiru EW, Githure JI, Ouma JH, et al. Evaluation of light traps for sampling Anopheline mosquitoes in Kilifi. Kenya J Am Mosq Control Assoc. 1993;9:260–3.
CAS
Google Scholar
Overgaard HJ, Sæbø S, Reddy MR, Reddy VP, Abaga S, Matias A, Slotman MA. Light traps fail to estimate reliable malaria mosquito biting rates on Bioko Island Equatorial Guinea. Malar J. 2012;11:56.
Article
Google Scholar
Vazquez-Prokopec GM, Galvin WA, Kelly R, Kitron U. A new, cost-effective, battery-powered aspirator for adult mosquito collections. J Med Entomol. 2009;46:1256–9.
Article
Google Scholar
Charlwood JD, Andegiorgish AK, Asfaha YE, Weldu LT, Petros F, Legese L, et al. Novel sampling methods for monitoring Anopheles arabiensis from Eritrea. PeerJ. 2021;9:e11497.
Article
Google Scholar
Onyango SA, Kitron U, Mungai P, Muchiri EM, Kokwaro E, King CH, Mutuku FM. Monitoring malaria vector control interventions: effectiveness of five different adult mosquito sampling methods. J Med Entomol. 2013;50:1140–51.
Article
Google Scholar
Muirhead-Thomson R, WHO. Further studies on the use of the artificial pit shelter for sampling outdoor resting populations of African Anophelines. Geneva: World Health Organization; 1960.
Google Scholar
Thomson RM. Studies on salt-water and fresh-water Anopheles gambiae on the East African coast. Bull Entomol Res. 1951;41:487–502.
Article
Google Scholar
Bogh C, Pedersen EM, Mukoko DA, Ouma JH. Permethrin-impregnated bednet effects on resting and feeding behaviour of lymphatic filariasis vector mosquitoes in Kenya. Med Vet Entomol. 1998;12:52–9.
Article
CAS
Google Scholar
Kweka EJ, Mahande AM. Comparative evaluation of four mosquitoes sampling methods in rice irrigation schemes of lower Moshi, northern Tanzania. Malar J. 2009;8:149.
Article
Google Scholar
Musiime AK, Smith DL, Kilama M, Rek J, Arinaitwe E, Nankabirwa JI, et al. Impact of vector control interventions on malaria transmission intensity, outdoor vector biting rates and Anopheles mosquito species composition in Tororo, Uganda. Malar J. 2019;18:445.
Article
CAS
Google Scholar
Okello PE, Van Bortel W, Byaruhanga AM, Correwyn A, Roelants P, Talisuna A, et al. Variation in malaria transmission intensity in seven sites throughout Uganda. Am J Trop Med Hyg. 2006;75:219–25.
Article
Google Scholar
Nankabirwa JI, Arinaitwe E, Rek J, Kilama M, Kizza T, Staedke SG, et al. Malaria transmission, infection, and disease following sustained indoor residual spraying of insecticide in Tororo Uganda. Am J Trop Med Hyg. 2020;103:1525–33.
Article
CAS
Google Scholar
Namuganga JF, Epstein A, Nankabirwa JI, Mpimbaza A, Kiggundu M, Sserwanga A, et al. The impact of stopping and starting indoor residual spraying on malaria burden in Uganda. Nat Commun. 2021;12:2635.
Article
CAS
Google Scholar
Epstein A, Maiteki-Ssebuguzi C, Namuganga JF, Nankabirwa JI, Gonahasa S, Opigo J, et al. Resurgence of malaria in Uganda despite sustained indoor residual spraying and repeated long lasting insecticidal net distributions. medRxiv. 2022. https://doi.org/10.1101/2022.02.18.22271193.
Article
Google Scholar
Nankabirwa JI, Bousema T, Blanken SL, Rek J, Arinaitwe E, Greenhouse B, et al. Measures of malaria transmission, infection, and disease in an area bordering two districts with and without sustained indoor residual spraying of insecticide in Uganda. Res Sq. 2022. https://doi.org/10.21203/rs.3.rs-1472796/v1.
Article
Google Scholar
Mawejje HD, Kilama M, Kigozi SP, Musiime AK, Kamya M, Lines J, et al. Impact of seasonality and malaria control interventions on Anopheles density and species composition from three areas of Uganda with differing malaria endemicity. Malar J. 2021;20:138.
Article
CAS
Google Scholar
Chemutai F, Ondijo CO, Kisakye J, Kabbale F, Egeru A. Malaria spatio-temporal patterns in Busia and Tororo Districts Eastern Uganda. Res Sq. 2022. https://doi.org/10.21203/rs.3.rs-1693668/v1.
Article
Google Scholar
Okiring J, Epstein A, Namuganga JF, Kamya V, Sserwanga A, Kapisi J, et al. Relationships between test positivity rate, total laboratory confirmed cases of malaria, and malaria incidence in high burden settings of Uganda: an ecological analysis. Malar J. 2021;20:142.
Article
Google Scholar
Tchouakui M, Mugenzi LM, Menze BD, Khaukha JN, Tchapga W, Tchoupo M, et al. Pyrethroid resistance aggravation in Ugandan malaria vectors is reducing bednet efficacy. Pathogens. 2021;10:415.
Article
Google Scholar
Lynd A, Gonahasa S, Staedke SG, Oruni A, Maiteki-Sebuguzi C, Dorsey G, et al. LLIN Evaluation in Uganda Project (LLINEUP): a cross-sectional survey of species diversity and insecticide resistance in 48 districts of Uganda. Parasit Vectors. 2019;12:94.
Article
Google Scholar
Coetzee M. Key to the females of Afrotropical Anopheles mosquitoes (Diptera: Culicidae). Malar J. 2020;19:70.
Article
Google Scholar
Anthony TG, And REH, Kitching IJ. Phylogeny of the pyretophorus series of Anopheles subgenus Cellia (Diptera: Culicidae). Syst Entomol. 1999;24:193–205.
Article
Google Scholar
Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520–9.
Article
CAS
Google Scholar
Wirtz R, Duncan J, Njelesani E, Schneider I, Brown A, Oster C, Were JB, Webster H. ELISA method for detecting Plasmodium falciparum circumsporozoite antibody. Bull World Health Organ. 1989;67:535–42.
CAS
Google Scholar
Beier JC, Killeen GF, Githure JI. Entomologic inoculation rates and Plasmodium falciparum malaria prevalence in Africa. Am J Trop Med Hyg. 1999;61:109–13.
Article
CAS
Google Scholar
Garrett-Jones C, Magayuka S, WHO. Studies on the natural incidence of Plasmodium and Wuchereria infections in Anopheles in rural East Africa. Geneva: World Health Organization; 1975.
Google Scholar
Costa-Neta BM, Lima-Neto AR, da Silva AA, Brito JM, Aguiar JVC, Ponte IS, et al. Centers for Disease Control-type light traps equipped with high-intensity light-emitting diodes as light sources for monitoring Anopheles mosquitoes. Acta Trop. 2018;183:61–3.
Article
Google Scholar
Sikaala CH, Chinula D, Chanda J, Hamainza B, Mwenda M, Mukali I, et al. A cost-effective, community-based, mosquito-trapping scheme that captures spatial and temporal heterogeneities of malaria transmission in rural Zambia. Malar J. 2014;13:225.
Article
Google Scholar
Charlwood J, Kessy E, Yohannes K, Protopopoff N, Rowland M, LeClair C. Studies on the resting behaviour and host choice of Anopheles gambiae and An. arabiensis from Muleba, Tanzania. Med Vet Entomol. 2018;32:263–70.
Article
CAS
Google Scholar
Kakilla C, Manjurano A, Nelwin K, Martin J, Mashauri F, Kinunghi SM, et al. Malaria vector species composition and entomological indices following indoor residual spraying in regions bordering Lake Victoria, Tanzania. Malar J. 2020;19:383.
Article
CAS
Google Scholar
Degefa T, Yewhalaw D, Zhou G, Lee M-C, Atieli H, Githeko AK, et al. Evaluation of the performance of new sticky pots for outdoor resting malaria vector surveillance in western Kenya. Parasit Vectors. 2019;12:278.
Article
Google Scholar
Russell TL, Govella NJ, Azizi S, Drakeley CJ, Kachur SP, Killeen GF. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar J. 2011;10:80.
Article
Google Scholar
Moiroux N, Gomez MB, Pennetier C, Elanga E, Djènontin A, Chandre F, et al. Changes in Anopheles funestus biting behavior following universal coverage of long-lasting insecticidal nets in Benin. J Infect Dis. 2012;206:1622–9.
Article
CAS
Google Scholar
Sougoufara S, Diédhiou SM, Doucouré S, Diagne N, Sembène PM, Harry M, et al. Biting by Anopheles funestus in broad daylight after use of long-lasting insecticidal nets: a new challenge to malaria elimination. Malar J. 2014;13:125.
Article
Google Scholar
Sangbakembi-Ngounou C, Costantini C, Longo-Pendy NM, Ngoagouni C, Akone-Ella O, Rahola N, et al. Diurnal biting of malaria mosquitoes in the Central African Republic indicates residual transmission may be “out of control.” Proc Natl Acad Sci USA. 2022;119:e2104282119.
Article
CAS
Google Scholar
Kenea O, Balkew M, Tekie H, Gebre-Michael T, Deressa W, Loha E, et al. Comparison of two adult mosquito sampling methods with human landing catches in south-central Ethiopia. Malar J. 2017;16:30.
Article
Google Scholar
Mathenge EM, Misiani GO, Oulo DO, Irungu LW, Ndegwa PN, Smith TA, et al. Comparative performance of the Mbita trap, CDC light trap and the human landing catch in the sampling of Anopheles arabiensis, An. funestus and culicine species in a rice irrigation in western Kenya. Malar J. 2005;4:7.
Article
Google Scholar
Degefa T, Yewhalaw D, Zhou G, Atieli H, Githeko AK, Yan G. Evaluation of human-baited double net trap and human-odour-baited CDC light trap for outdoor host-seeking malaria vector surveillance in Kenya and Ethiopia. Malar J. 2020;19:174.
Article
Google Scholar