Tinto H, Rwagacondo C, Karema C, Mupfasoni D, Vandoren W, Rusanganwa E, Erhart A, Van Overmeir C, Van Marck E, D'Alessandro U: In-vitro susceptibility of Plasmodium falciparum to monodesethylamodiaquine, dihydroartemisinin and quinine in an area of high chloroquine resistance in Rwanda. Trans R Soc Trop Med Hyg. 2006, 100: 509-514. 10.1016/j.trstmh.2005.09.018.
Article
CAS
PubMed
Google Scholar
Mu J, Ferdig MT, Feng X, Joy DA, Duan J, Furuya T, Subramanian G, Aravind L, Cooper RA, Wootton JC, Xiong M, Su XZ: Multiple transporters associated with malaria parasite responses to chloroquine and quinine. Mol Microbiol. 2003, 49: 977-989. 10.1046/j.1365-2958.2003.03627.x.
Article
CAS
PubMed
Google Scholar
Jacqueline R: Halt called on single-drug antimalarial prescriptions. Nature. 2006, 10.1038/news060116-13.
Google Scholar
Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, Lwin KM, Ariey F, Hanpithakpong W, Lee SJ, Ringwald P, Silamut K, Imwong M, Chotivanich K, Lim P, Herdman T, An SS, Yeung S, Singhasivanon P, Day NP, Lindegardh N, Socheat D, White NJ: Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009, 361: 455-467. 10.1056/NEJMoa0808859.
Article
PubMed Central
CAS
PubMed
Google Scholar
White NJ: Artemisinin resistance--the clock is ticking. Lancet. 2010, 376: 2051-2052. 10.1016/S0140-6736(10)61963-0.
Article
PubMed
Google Scholar
Crompton PD, Pierce SK, Miller LH: Advances and challenges in malaria vaccine development. J Clin Invest. 2010, 120: 4168-4178. 10.1172/JCI44423.
Article
PubMed Central
CAS
PubMed
Google Scholar
WHO: World Malaria Report 2011, Issue Dec. 2011,http://www.who.int/mediacentre/factsheets/fs094/en/index.html,
Google Scholar
Yount NY, Yeaman MR: Emerging themes and therapeutic prospects for anti-infective peptides. Annu Rev Pharmacol Toxicol. 2012, 52: 337-360. 10.1146/annurev-pharmtox-010611-134535.
Article
CAS
PubMed
Google Scholar
Yeaman MR, Yount NY: Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev. 2003, 55: 27-55. 10.1124/pr.55.1.2.
Article
CAS
PubMed
Google Scholar
Epand RM, Shai Y, Segrest JP, Anantharamaiah GM: Mechanisms for the modulation of membrane bilayer properties by amphipathic helical peptides. Biopolymers. 1995, 37: 319-338. 10.1002/bip.360370504.
Article
CAS
PubMed
Google Scholar
Feder R, Dagan A, Mor A: Structure-activity relationship study of antimicrobial dermaseptin S4 showing the consequences of peptide oligomerization on selective cytotoxicity. J Biol Chem. 2000, 275: 4230-4238. 10.1074/jbc.275.6.4230.
Article
CAS
PubMed
Google Scholar
Zasloff M: Antimicrobial peptides of multicellular organisms. Nature. 2002, 415: 389-395. 10.1038/415389a.
Article
CAS
PubMed
Google Scholar
Sherman IW, Prudhomme J, Tait JF: Altered membrane phospholipid asymmetry in Plasmodium falciparum-infected erythrocytes. Parasitol Today. 1997, 13: 242-243. 10.1016/S0169-4758(97)85284-2.
Article
CAS
PubMed
Google Scholar
Gelhaus C, Jacobs T, Andra J, Leippe M: The antimicrobial peptide NK-2, the core region of mammalian NK-lysin, kills intraerythrocytic Plasmodium falciparum. Antimicrob Agents Chemother. 2008, 52: 1713-1720. 10.1128/AAC.01342-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ghosh JK, Shaool D, Guillaud P, Ciceron L, Mazier D, Kustanovich I, Shai Y, Mor A: Selective cytotoxicity of dermaseptin S3 toward intraerythrocytic Plasmodium falciparum and the underlying molecular basis. J Biol Chem. 1997, 272: 31609-31616. 10.1074/jbc.272.50.31609.
Article
CAS
PubMed
Google Scholar
Radzishevsky I, Krugliak M, Ginsburg H, Mor A: Antiplasmodial activity of lauryl-lysine oligomers. Antimicrob Agents Chemother. 2007, 51: 1753-1759. 10.1128/AAC.01288-06.
Article
PubMed Central
CAS
PubMed
Google Scholar
Azouzi S, El Kirat K, Morandat S: The potent antimalarial drug cyclosporin A preferentially destabilizes sphingomyelin-rich membranes. Langmuir. 2010, 26: 1960-1965. 10.1021/la902580w.
Article
CAS
PubMed
Google Scholar
Boman HG, Wade D, Boman IA, Wahlin B, Merrifield RB: Antibacterial and antimalarial properties of peptides that are cecropin-melittin hybrids. FEBS Lett. 1989, 259: 103-106. 10.1016/0014-5793(89)81505-4.
Article
CAS
PubMed
Google Scholar
Gao B, Xu J: Rodriguez Mdel C, Lanz-Mendoza H, Hernandez-Rivas R, Du W, Zhu S: Characterization of two linear cationic antimalarial peptides in the scorpion Mesobuthus eupeus. Biochimie. 2010, 92: 350-359. 10.1016/j.biochi.2010.01.011.
Article
CAS
PubMed
Google Scholar
Nagaraj G, Uma MV, Shivayogi MS, Balaram H: Antimalarial activities of peptide antibiotics isolated from fungi. Antimicrob Agents Chemother. 2001, 45: 145-149. 10.1128/AAC.45.1.145-149.2001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hancock RE, Sahl HG: Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006, 24: 1551-1557. 10.1038/nbt1267.
Article
CAS
PubMed
Google Scholar
Dathe M, Wieprecht T: Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophys Acta. 1999, 1462: 71-87. 10.1016/S0005-2736(99)00201-1.
Article
CAS
PubMed
Google Scholar
Giangaspero A, Sandri L, Tossi A: Amphipathic alpha helical antimicrobial peptides. Eur J Biochem. 2001, 268: 5589-5600. 10.1046/j.1432-1033.2001.02494.x.
Article
CAS
PubMed
Google Scholar
Malina A, Shai Y: Conjugation of fatty acids with different lengths modulates the antibacterial and antifungal activity of a cationic biologically inactive peptide. Biochem J. 2005, 390: 695-702. 10.1042/BJ20050520.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dewan PC, Anantharaman A, Chauhan VS, Sahal D: Antimicrobial action of prototypic amphipathic cationic decapeptides and their branched dimers. Biochemistry. 2009, 48: 5642-5657. 10.1021/bi900272r.
Article
CAS
PubMed
Google Scholar
Trager W, Jensen JB: Human malaria parasites in continuous culture. Science. 1976, 193: 673-675. 10.1126/science.781840.
Article
CAS
PubMed
Google Scholar
MR4. http://www.mr4.org/MR4ReagentsSearch/Results.aspx?BEINum=MRA-819&Template=parasites,
Lambros C, Vanderberg JP: Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979, 65: 418-420. 10.2307/3280287.
Article
CAS
PubMed
Google Scholar
Rivadeneira EM, Wasserman M, Espinal CT: Separation and concentration of schizonts of Plasmodium falciparum by Percoll gradients. J Protozool. 1983, 30: 367-370.
Article
CAS
PubMed
Google Scholar
Smilkstein M, Sriwilaijaroen N, Kelly JX, Wilairat P, Riscoe M: Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob Agents Chemother. 2004, 48: 1803-1806. 10.1128/AAC.48.5.1803-1806.2004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mosmann T: Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assays. J Immunol Meth. 1983, 65: 55-63. 10.1016/0022-1759(83)90303-4.
Article
CAS
Google Scholar
Yonath A: Polar bears, antibiotics, and the evolving ribosome (Nobel Lecture). Angew Chem Int Ed Engl. 2010, 49: 4341-4354.
Article
PubMed
Google Scholar
Matsuzaki K: Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta. 1999, 1462: 1-10. 10.1016/S0005-2736(99)00197-2.
Article
CAS
PubMed
Google Scholar
Shai Y: Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta. 1999, 1462: 55-70. 10.1016/S0005-2736(99)00200-X.
Article
CAS
PubMed
Google Scholar
Yang L, Weiss TM, Lehrer RI, Huang HW: Crystallization of antimicrobial pores in membranes: magainin and protegrin. Biophys J. 2000, 79: 2002-2009. 10.1016/S0006-3495(00)76448-4.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ramagopal UA, Ramakumar S, Mathur P, Joshi R, Chauhan VS: Dehydrophenylalanine zippers: strong helix-helix clamping through a network of weak interactions. Protein Eng. 2002, 15: 331-335. 10.1093/protein/15.4.331.
Article
CAS
PubMed
Google Scholar
Ramagopal UA, Ramakumar S, Sahal D, Chauhan VS: De novo design and characterization of an apolar helical hairpin peptide at atomic resolution: Compaction mediated by weak interactions. Proc Natl Acad Sci U S A. 2001, 98: 870-874. 10.1073/pnas.98.3.870.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rudresh, Ramakumar S, Ramagopal UA, Inai Y, Goel S, Sahal D, Chauhan VS: De novo design and characterization of a helical hairpin eicosapeptide; emergence of an anion receptor in the linker region. Structure. 2004, 12: 389-396. 10.1016/j.str.2004.02.014.
Article
CAS
PubMed
Google Scholar
Fichera ME, Roos DS: A plastid organelle as a drug target in apicomplexan parasites. Nature. 1997, 390: 407-409. 10.1038/37132.
Article
CAS
PubMed
Google Scholar
Ralph SA, D'Ombrain MC, McFadden GI: The apicoplast as an antimalarial drug target. Drug Resist Updat. 2001, 4: 145-151. 10.1054/drup.2001.0205.
Article
CAS
PubMed
Google Scholar
Dahl EL, Rosenthal PJ: Multiple antibiotics exert delayed effects against the Plasmodium falciparum apicoplast. Antimicrob Agents Chemother. 2007, 51: 3485-3490. 10.1128/AAC.00527-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hanssen E, McMillan PJ, Tilley L: Cellular architecture of Plasmodium falciparum-infected erythrocytes. Int J Parasitol. 2010, 40: 1127-1135. 10.1016/j.ijpara.2010.04.012.
Article
PubMed
Google Scholar
Allred DR, Sterling CR, Morse PD: Increased fluidity of Plasmodium berghei-infected mouse red blood cell membranes detected by electron spin resonance spectroscopy. Mol Biochem Parasitol. 1983, 7: 27-39. 10.1016/0166-6851(83)90114-7.
Article
CAS
PubMed
Google Scholar
Howard RJ, Sawyer WH: Changes in the membrane microviscosity of mouse red blood cells infected with Plasmodium berghei detected using n-(9-anthroyloxy) fatty acid fluorescent probes. Parasitology. 1980, 80: 331-342. 10.1017/S0031182000000792.
Article
CAS
PubMed
Google Scholar
Sherman IW, Greenan JR: Altered red cell membrane fluidity during schizogonic development of malarial parasites (Plasmodium falciparum and P. lophurae). Trans R Soc Trop Med Hyg. 1984, 78: 641-644. 10.1016/0035-9203(84)90227-X.
Article
CAS
PubMed
Google Scholar
Taraschi TF, Parashar A, Hooks M, Rubin H: Perturbation of red cell membrane structure during intracellular maturation of Plasmodium falciparum. Science. 1986, 232: 102-104. 10.1126/science.3006251.
Article
CAS
PubMed
Google Scholar
Vial HJ, Philippot JR, Wallach DF: A reevaluation of the status of cholesterol in erythrocytes infected by Plasmodium knowlesi and P. falciparum. Mol Biochem Parasitol. 1984, 13: 53-65. 10.1016/0166-6851(84)90101-4.
Article
CAS
PubMed
Google Scholar
Vial HJ, Thuet MJ, Broussal JL, Philippot JR: Phospholipid biosynthesis by Plasmodium knowlesi-infected erythrocytes: the incorporation of phospohlipid precursors and the identification of previously undetected metabolic pathways. J Parasitol. 1982, 68: 379-391. 10.2307/3280946.
Article
CAS
PubMed
Google Scholar
Gupta CM, Mishra GC: Transbilayer phospholipid asymmetry in Plasmodium knowlesi-infected host cell membrane. Science. 1981, 212: 1047-1049. 10.1126/science.7233198.
Article
CAS
PubMed
Google Scholar
Joshi P, Dutta GP, Gupta CM: An intracellular simian malarial parasite (Plasmodium knowlesi) induces stage-dependent alterations in membrane phospholipid organization of its host erythrocyte. Biochem J. 1987, 246: 103-108.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schwartz RS, Olson JA, Raventos-Suarez C, Yee M, Heath RH, Lubin B, Nagel RL: Altered plasma membrane phospholipid organization in Plasmodium falciparum-infected human erythrocytes. Blood. 1987, 69: 401-407.
CAS
PubMed
Google Scholar
Ginsburg H, Kutner S, Zangwil M, Cabantchik ZI: Selectivity properties of pores induced in host erythrocyte membrane by Plasmodium falciparum. Effect of parasite maturation. Biochim Biophys Acta. 1986, 861: 194-196.
Article
CAS
PubMed
Google Scholar
Kutner S, Ginsburg H, Cabantchik ZI: Permselectivity changes in malaria (Plasmodium falciparum) infected human red blood cell membranes. J Cell Physiol. 1983, 114: 245-251. 10.1002/jcp.1041140215.
Article
CAS
PubMed
Google Scholar
Vial HJ, Ancelin ML: Malarial lipids. An overview. Subcell Biochem. 1992, 18: 259-306.
Article
CAS
PubMed
Google Scholar
Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB: The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci U S A. 2000, 97: 13003-13008. 10.1073/pnas.97.24.13003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rothbard JB, Jessop TC, Lewis RS, Murray BA, Wender PA: Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells. J Am Chem Soc. 2004, 126: 9506-9507. 10.1021/ja0482536.
Article
CAS
PubMed
Google Scholar
Terrone D, Sang SL, Roudaia L, Silvius JR: Penetratin and related cell-penetrating cationic peptides can translocate across lipid bilayers in the presence of a transbilayer potential. Biochemistry. 2003, 42: 13787-13799. 10.1021/bi035293y.
Article
CAS
PubMed
Google Scholar
Brown KL, Conboy JC: Electrostatic induction of lipid asymmetry. J Am Chem Soc. 2011, 133: 8794-8797. 10.1021/ja201177k.
Article
CAS
PubMed
Google Scholar