WHO. World Malaria Report 2014. Geneva: World Health Organization; 2014.
Google Scholar
Valderramos SG, Fidock DA. Transporters involved in resistance to antimalarial drugs. Trends Pharmacol Sci. 2006;27:594–601.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dondorp AM, Yeung S, White L, Nguon C, Day NP, Socheat D, et al. Artemisinin resistance: current status and scenarios for containment. Nat Rev Microbiol. 2010;8:272–80.
Article
CAS
PubMed
Google Scholar
Jambou R, Le Bras J, Randrianarivelojosia M. Pitfalls in new artemisinin-containing antimalarial drug development. Trends Parasitol. 2011;27:82–90.
Article
CAS
PubMed
Google Scholar
Nzila A, Ma Z, Chibale K. Drug repositioning in the treatment of malaria and TB. Future Med Chem. 2011;3:1413–26.
Article
CAS
PubMed
Google Scholar
Yuan J, Cheng KC, Johnson RL, Huang R, Pattaradilokrat S, Liu A, et al. Chemical genomic profiling for antimalarial therapies, response signatures, and molecular targets. Science. 2011;333:724–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matthews H, Usman-Idris M, Khan F, Read M, Nirmalan N. Drug repositioning as a route to anti-malarial drug discovery: preliminary investigation of the in vitro anti-malarial efficacy of emetine dihydrochloride hydrate. Malar J. 2013;12:359.
Article
PubMed
PubMed Central
Google Scholar
Kaiser M, Maser P, Tadoori LP, Ioset JR, Brun R. Antiprotozoal activity profiling of approved drugs: a starting point toward drug repositioning. PLoS ONE. 2015;10:e0135556.
Article
PubMed
PubMed Central
Google Scholar
Kruger FA, Overington JP. Global analysis of small molecule binding to related protein targets. PLoS Comput Biol. 2012;8:e1002333.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aurrecoechea C, Brestelli J, Brunk BP, Dommer J, Fischer S, Gajria B, et al. PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res. 2009;37:D539–43.
Article
CAS
PubMed
Google Scholar
Pease BN, Huttlin EL, Jedrychowski MP, Talevich E, Harmon J, Dillman T, et al. Global analysis of protein expression and phosphorylation of three stages of Plasmodium falciparum intraerythrocytic development. J Proteome Res. 2013;12:4028–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Florens L, Washburn MP, Raine JD, Anthony RM, Grainger M, Haynes JD, et al. A proteomic view of the Plasmodium falciparum life cycle. Nature. 2002;419:520–6.
Article
CAS
PubMed
Google Scholar
Le Roch KG, Zhou Y, Blair PL, Grainger M, Moch JK, Haynes JD, et al. Discovery of gene function by expression profiling of the malaria parasite life cycle. Science. 2003;301:1503–8.
Article
PubMed
Google Scholar
Lindner SE, Swearingen KE, Harupa A, Vaughan AM, Sinnis P, Moritz RL, et al. Total and putative surface proteomics of malaria parasite salivary gland sporozoites. Mol Cell Proteomics. 2013;12:1127–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Silvestrini F, Lasonder E, Olivieri A, Camarda G, van Schaijk B, Sanchez M, et al. Protein export marks the early phase of gametocytogenesis of the human malaria parasite Plasmodium falciparum. Mol Cell Proteomics. 2010;9:1437–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramakrishnan G, Chandra NR, Srinivasan N. Recognizing drug targets using evolutionary information: implications for repurposing FDA-approved drugs against Mycobacterium tuberculosis H37Rv. Mol BioSyst. 2015;11:3316–31.
Article
CAS
PubMed
Google Scholar
Eddy SR. Accelerated Profile HMM Searches. PLoS Comput Biol. 2011;7:e1002195.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pieper U, Webb BM, Barkan DT, Schneidman-Duhovny D, Schlessinger A, Braberg H, et al. ModBase, a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Res. 2011;39:D465–74.
Article
CAS
PubMed
Google Scholar
Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234:779–815.
Article
CAS
PubMed
Google Scholar
Shen MY, Sali A. Statistical potential for assessment and prediction of protein structures. Protein Sci. 2006;15:2507–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Skolnick J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 2005;33:2302–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu J, Zhang Y. How significant is a protein structure similarity with TM-score = 0.5? Bioinformatics. 2010;26:889–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002;419:498–511.
Article
CAS
PubMed
Google Scholar
Tyagi N, Swapna LS, Mohanty S, Agarwal G, Gowri VS, Anamika K, et al. Evolutionary divergence of Plasmodium falciparum: sequences, protein–protein interactions, pathways and processes. Infect Disord Drug Targets. 2009;9:257–71.
Article
CAS
PubMed
Google Scholar
Mohanty S, Ramakrishnan G, Dave P, Srinivasan N. Analysis of sequence divergence in metabolic proteins of Plasmodium falciparum: implications for remote homology detection. In: Dunn BM, editor. Frontiers in protein and peptide sciences. Emirate of Sharjah: Bentham Science Publishers; 2014. p. 226–72.
Google Scholar
Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006;34:D668–72.
Article
CAS
PubMed
Google Scholar
Istvan ES, Dharia NV, Bopp SE, Gluzman I, Winzeler EA, Goldberg DE. Validation of isoleucine utilization targets in Plasmodium falciparum. Proc Natl Acad Sci USA. 2011;108:1627–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M, et al. The ChEMBL bioactivity database: an update. Nucleic Acids Res. 2014;42:D1083–90.
Article
CAS
PubMed
Google Scholar
ChEMBL. 2017. https://www.ebi.ac.uk/chembl/. Accessed 20 Jan 2016.
Klein LL, Yeung CM, Kurath P, Mao JC, Fernandes PB, Lartey PA, et al. Synthesis and activity of nonhydrolyzable pseudomonic acid analogues. J Med Chem. 1989;32:151–60.
Article
CAS
PubMed
Google Scholar
Brown P, Best DJ, Broom NJ, Cassels R, O’Hanlon PJ, Mitchell TJ, et al. The chemistry of pseudomonic acid. 18. Heterocyclic replacement of the alpha, beta-unsaturated ester: synthesis, molecular modeling, and antibacterial activity. J Med Chem. 1997;40:2563–70.
Article
CAS
PubMed
Google Scholar
Dunn CR, Banfield MJ, Barker JJ, Higham CW, Moreton KM, Turgut-Balik D, et al. The structure of lactate dehydrogenase from Plasmodium falciparum reveals a new target for anti-malarial design. Nat Struct Biol. 1996;3:912–5.
Article
CAS
PubMed
Google Scholar
Read JA, Wilkinson KW, Tranter R, Sessions RB, Brady RL. Chloroquine binds in the cofactor binding site of Plasmodium falciparum lactate dehydrogenase. J Biol Chem. 1999;274:10213–8.
Article
CAS
PubMed
Google Scholar
Race PR, Lovering AL, Green RM, Ossor A, White SA, Searle PF, et al. Structural and mechanistic studies of Escherichia coli nitroreductase with the antibiotic nitrofurazone. Reversed binding orientations in different redox states of the enzyme. J Biol Chem. 2005;280:13256–64.
Article
CAS
PubMed
Google Scholar
Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47:1739–49.
Article
CAS
PubMed
Google Scholar
Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, et al. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem. 2004;47:1750–9.
Article
CAS
PubMed
Google Scholar
Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem. 2006;49:6177–96.
Article
CAS
PubMed
Google Scholar
Subbayya I, Ray S, Balaram P, Balaram H. Metabolic enzymes as potential drug targets in Plasmodium falciparum. Indian J Med Res. 1997;106:79.
CAS
PubMed
Google Scholar
Ralph SA, D’Ombrain MC, McFadden GI. The apicoplast as an antimalarial drug target. Drug Resist Updates. 2001;4:145–51.
Article
CAS
Google Scholar
Ginsburg H. Progress in in silico functional genomics: the malaria metabolic pathways database. Trends Parasitol. 2006;22:238–40.
Article
CAS
PubMed
Google Scholar
Arnott JA, Planey SL. The influence of lipophilicity in drug discovery and design. Exp Opin Drug Discov. 2012;7:863–75.
Article
CAS
Google Scholar
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:3–26.
Article
CAS
PubMed
Google Scholar
Bispo NA, Culleton R, Silva LA, Cravo P. A systematic in silico search for target similarity identifies several approved drugs with potential activity against the Plasmodium falciparum apicoplast. PLoS ONE. 2013;8:e59288.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schlitzer M. Malaria chemotherapeutics part I: history of antimalarial drug development, currently used therapeutics, and drugs in clinical development. ChemMedChem. 2007;2:944–86.
Article
CAS
PubMed
Google Scholar
ChemAxon. 2017. https://www.chemaxon.com/. Accessed 20 Jan 2016.
Li W, Mo W, Shen D, Sun L, Wang J, Lu S, et al. Yeast model uncovers dual roles of mitochondria in action of artemisinin. PLoS Genet. 2005;1:e36.
Article
PubMed
PubMed Central
Google Scholar
Cumming JN, Ploypradith P, Posner GH. Antimalarial activity of artemisinin (qinghaosu) and related trioxanes: mechanism(s) of action. Adv Pharmacol. 1997;37:253–97.
Article
CAS
PubMed
Google Scholar
Nakornchai S, Konthiang P. Activity of azithromycin or erythromycin in combination with antimalarial drugs against multidrug-resistant Plasmodium falciparum in vitro. Acta Trop. 2006;100:185–91.
Article
CAS
PubMed
Google Scholar
Amukoye E, Winstanley PA, Watkins WM, Snow RW, Hatcher J, Mosobo M, et al. Chlorproguanil–dapsone: effective treatment for uncomplicated falciparum malaria. Antimicrob Agents Chemother. 1997;41:2261–4.
CAS
PubMed
PubMed Central
Google Scholar
Berman SJ. Chloroquine-pyrimethamine-sulfisoxazole therapy of Plasmodium falciparum malaria. An alternative to quinine. JAMA. 1969;207:128–30.
Article
CAS
PubMed
Google Scholar
Ruiz-Sanchez F, Quezada M, Paredes M, Casillas J, Riebeling R. Chloramphenicol in malaria. Am J Trop Med Hyg. 1952;1:936–40.
Article
CAS
PubMed
Google Scholar
Divo AA, Sartorelli AC, Patton CL, Bia FJ. Activity of fluoroquinolone antibiotics against Plasmodium falciparum in vitro. Antimicrob Agents Chemother. 1988;32:1182–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skinner-Adams TS, Davis TM, Manning LS, Johnston WA. The efficacy of benzimidazole drugs against Plasmodium falciparum in vitro. Trans R Soc Trop Med Hyg. 1997;91:580–4.
Article
CAS
PubMed
Google Scholar
Sahu R, Walker LA, Tekwani BL. In vitro and in vivo anti-malarial activity of tigecycline, a glycylcycline antibiotic, in combination with chloroquine. Malar J. 2014;13:414.
Article
PubMed
PubMed Central
Google Scholar
Pradines B, Rogier C, Fusai T, Mosnier J, Daries W, Barret E, et al. In vitro activities of antibiotics against Plasmodium falciparum are inhibited by iron. Antimicrob Agents Chemother. 2001;45:1746–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sousa M, Pozniak A, Boffito M. Pharmacokinetics and pharmacodynamics of drug interactions involving rifampicin, rifabutin and antimalarial drugs. J Antimicrob Chemother. 2008;62:872–8.
Article
CAS
PubMed
Google Scholar
Petersen E. In vitro susceptibility of Plasmodium falciparum malaria to pyrimethamine, sulfadoxine, trimethoprim and sulfamethoxazole, singly and in combination. Trans R Soc Trop Med Hyg. 1987;81:238–41.
Article
CAS
PubMed
Google Scholar
Mahmoudi N, Ciceron L, Franetich JF, Farhati K, Silvie O, Eling W, et al. In vitro activities of 25 quinolones and fluoroquinolones against liver and blood stage Plasmodium spp. Antimicrob Agents Chemother. 2003;47:2636–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barthel D, Schlitzer M, Pradel G. Telithromycin and quinupristin–dalfopristin induce delayed death in Plasmodium falciparum. Antimicrob Agents Chemother. 2008;52:774–7.
Article
CAS
PubMed
Google Scholar
Gupta A, Mir SS, Saqib U, Biswas S, Vaishya S, Srivastava K, et al. The effect of fusidic acid on Plasmodium falciparum elongation factor G (EF-G). Mol Biochem Parasitol. 2013;192:39–48.
Article
CAS
PubMed
Google Scholar
Surolia N, Surolia A. Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum. Nat Med. 2001;7:167–73.
Article
CAS
PubMed
Google Scholar
Luzzatto L. The rise and fall of the antimalarial Lapdap: a lesson in pharmacogenetics. Lancet. 2010;376:739–41.
Article
PubMed
Google Scholar
Mintzer DM, Billet SN, Chmielewski L. Drug-induced hematologic syndromes. Adv Hematol. 2009;2009:495863.
Article
PubMed
PubMed Central
Google Scholar