Gorgas WC. The conquest of the tropics for the white race. JAMA. 1909;52:1967–9.
Article
Google Scholar
Zetek J. Behavior of Anopheles albimanus Wiede and tarsimaculata Goeldi. Ann Entomol Soc Am. 1915;8:221–71.
Article
Google Scholar
Gorgas WC. Anti-mosquito work at Panama. Proc R Soc Med. 1914;31:32–40.
Google Scholar
Sutter PS. Nature’s agents or agents of empire? Entomological workers and environmental change during the construction of the Panama Canal. Isis. 2007;98:724–54.
Article
PubMed
Google Scholar
Dehné EJ. Fifty years of malaria control in the Panama area. Am J Trop Med Hyg. 1955;4:800–11.
Article
PubMed
Google Scholar
Kendall AI. Malarial infection in certain native villages of the canal zone. JAMA. 1906;46:1266–73.
Article
Google Scholar
Kendall AI. Malarial infection in certain native villages of the canal zone. JAMA. 1906;46:1151–4.
Article
Google Scholar
Hurtado LA, Cáceres L, Chaves LF, Calzada JE. When climate change couples social neglect: malaria dynamics in Panamá. Emerg Microbes Infect. 2014;3:e27.
Article
PubMed
PubMed Central
Google Scholar
Obaldia N. Determinants of low socio-economic status and risk of Plasmodium vivax malaria infection in Panama (2009–2012): a case–control study. Malar J. 2015;14:14.
Article
PubMed
PubMed Central
Google Scholar
Cáceres L, Calzada JE, Gabster A, Young J, Márquez R, Torres R, et al. Social representations of malaria in the Guna indigenous population of Comarca Guna de Madungandi, Panama. Malar J. 2017;16:256.
Article
PubMed
PubMed Central
Google Scholar
Apgar MJ, Allen W, Moore K, Ataria J. Understanding adaptation and transformation through indigenous practice: the case of the Guna of Panama. Ecology Society. 2015;20:45.
Article
Google Scholar
Valiente López A. La jurisdicción indígena en la legislación Panameña. In: Huber R, Martinez JC, Lachenal C, Ariza R, Eds. Hacia sistemas juridicos plurales. México: Konrad Adenauer Stiftung; 2008:203–37.
Cohen JM, Moonen B, Snow RW, Smith DL. How absolute is zero? An evaluation of historical and current definitions of malaria elimination. Malar J. 2010;9:213.
Article
PubMed
PubMed Central
Google Scholar
Herrera S, Quiñones ML, Quintero JP, Corredor V, Fuller DO, Mateus JC, et al. Prospects for malaria elimination in non-Amazonian regions of Latin America. Acta Trop. 2012;121:315–23.
Article
PubMed
Google Scholar
Cohen JM, Smith DL, Cotter C, Ward A, Yamey G, Sabot OJ, et al. Malaria resurgence: a systematic review and assessment of its causes. Malar J. 2012;11:122.
Article
PubMed
PubMed Central
Google Scholar
Calzada JE, Marquez R, Rigg C, Victoria C, De La Cruz M, Chaves LF, et al. Characterization of a recent malaria outbreak in the autonomous indigenous region of Guna Yala, Panama. Malar J. 2015;14:459.
Article
PubMed
PubMed Central
Google Scholar
Loaiza JR, Bermingham E, Scott ME, Rovira JR, Conn JE. Species composition and distribution of adult Anopheles (Diptera: Culicidae) in Panama. J Med Entomol. 2008;45:841–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Calzada JE, Samudio F, Bayard V, Obaldia N, de Mosca IB, Pascale JM. Revising antimalarial drug policy in Central America: experience in Panama. Trans R Soc Trop Med Hyg. 2008;102:694–8.
Article
PubMed
Google Scholar
Obaldia N, Baro NK, Calzada JE, Santamaria AM, Daniels R, Wong W, et al. Clonal Outbreak of Plasmodium falciparum Infection in Eastern Panama. J Infect Dis. 2015;211:1087–96.
Article
PubMed
Google Scholar
Chaves LF, Koenraadt CJM. Climate change and highland malaria: fresh air for a hot debate. Q Rev Biol. 2010;85:27–55.
Article
PubMed
Google Scholar
Lindsay SW, Birley MH. Climate change and malaria transmission. Ann Trop Med Parasitol. 1996;90:573–88.
Article
CAS
PubMed
Google Scholar
Displacement Solutions. Cambio climático y desplazamiento en la región autónoma de Guna Yala. Panamá: Displacement Solutions; 2014.
Google Scholar
Galindo P, Adames A, Peralta P, Johnson C, Read R. Impacto de la hidroeléctrica de Bayano en la transmisión de arbovirus. Rev Méd Panamá. 1983;8:89–134.
CAS
PubMed
Google Scholar
Autoridad Nacional del Ambiente. Atlas Ambiental de la República de Panamá. Ciudad de Panamá: Editora Novo Art; 2010.
Google Scholar
Ministerio de Economia y Finanzas. Indice de Pobreza Multidimensional de Panamá Año 2017;2017.
Programa de las Naciones Unidas Para el Desarrollo. Atlas de Desarrollo Humano Local: Panamá 2015;2015.
KMNI Climate Explorer [http://climexp.knmi.nl].
NOAA Climate Prediction Center [http://www.cpc.ncep.noaa.gov/data/indices/ersst3b.nino.mth.81-10.ascii].
NASA Land Processes Distributed Active Archive Center [https://lpdaac.usgs.gov].
Busetto L, Ranghetti L. MODIStsp: an R package for automatic preprocessing of MODIS Land Products time series. Comp Geosci. 2016;97:40–8.
Article
Google Scholar
Shumway RH, Stoffer DS. Time series analysis and its applications. 3rd ed. New York: Springer; 2011.
Book
Google Scholar
Venables WN, Ripley BD. Modern applied statistics with S. New York: Springer; 2002.
Book
Google Scholar
Cazelles B, Chavez M, Magny GC, Guégan J-F, Hales S. Time-dependent spectral analysis of epidemiological time-series with wavelets. J R Soc Interface. 2007;4:625–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chaves LF, Calzada JE, Valderama A, Saldaña A. Cutaneous leishmaniasis and sandfly fluctuations are associated with El Niño in Panamá. PLoS Negl Trop Dis. 2014;8:e3210.
Article
PubMed
PubMed Central
Google Scholar
PAHO. Report on the Situation of Malaria in the Americas, 2000–2015 Document prepared by the Regional Malaria Program, Pan American Health Organization with data from Annual Country Reports. Washington D.C.: Pan American Health Organization; 2016.
Google Scholar
Organization PAHO. Report on the situation of Malaria in the Americas, 2014. Washington D.C.: Pan American Health Organization; 2016.
Google Scholar
Panama Country Report [http://country.eiu.com/panama].
Martínez Mauri M. La autonomía indígena en Panamá: la experiencia del pueblo kuna (siglos XVI–XXI). Quito: Senacyt Panamá Editorial Abya Yala; 2011.
Google Scholar
Guzmán HM, Guevara C, Castillo A. Natural disturbances and mining of Panamanian coral reefs by indigenous people. Conserv Biol. 2003;17:1396–401.
Article
Google Scholar
Pascual M, Ahumada JA, Chaves LF, Rodo X, Bouma M. Malaria resurgence in the East African highlands: temperature trends revisited. Proc Natl Acad Sci USA. 2006;103:5829–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chaves LF. Climate change and the biology of insect vectors of human pathogens. In: Johnson S, Jones H, editors. Invertebrates and Global Climate Change. Chichester: Wiley; 2017. p. 126–47.
Google Scholar
Shapiro LL, Whitehead SA, Thomas MB. Quantifying the effects of temperature on mosquito and parasite traits that determine the transmission potential of human malaria. PLoS Biol. 2017;15:e2003489.
Article
PubMed
PubMed Central
Google Scholar
Kaneko A, Taleo G, Kalkoa M, Yamar S, Kobayakawa T, Björkman A. Malaria eradication on islands. Lancet. 2000;356:1560–4.
Article
CAS
PubMed
Google Scholar
Chaves LF, Kaneko A, Taleo G, Pascual M, Wilson ML. Malaria transmission pattern resilience to climatic variability is mediated by insecticide-treated nets. Malar J. 2008;7:100.
Article
PubMed
PubMed Central
Google Scholar
Garnham PCC. Malaria parasites and other haemosporidia. Oxford: Blackwell Scientific Publications Ltd.; 1966.
Google Scholar
Chaves LF, Kaneko A, Pascual M. Random, top-down, or bottom-up coexistence of parasites: malaria population dynamics in multi-parasitic settings. Ecology. 2009;90:2414–25.
Article
PubMed
Google Scholar
Boyd MF, Kitchen SF. Vernal vivax activity in persons simultaneously inoculated with Plasmodium vivax and Plasmodium falciparum. Am J Trop Med Hyg. 1938;18:505–14.
Article
Google Scholar
Boyd MF, Kitchen SF. Renewed clinical activity in naturally induced vivax malaria. Am J Trop Med Hyg. 1944;24(Suppl 1):221–34.
Article
Google Scholar
Olliaro PL, Barnwell JW, Barry A, Mendis K, Mueller I, Reeder JC, et al. Implications of Plasmodium vivax biology for control, elimination, and research. Am J Trop Med Hyg. 2016;95:4–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Contacos PG, Collins WE, Jeffery GM, Krotoski WA, Howard WA. Studies on the characterization of Plasmodium vivax strains from Central America. Am J Trop Med Hyg. 1972;21:707–12.
Article
CAS
PubMed
Google Scholar
Samudio F, Santamaría AM, Obaldía NI, Pascale JM, Bayard V, Calzada JE. Prevalence of Plasmodium falciparum mutations associated with antimalarial drug resistance during an epidemic in Kuna Yala, Panama, Central America. Am J Trop Med Hyg. 2005;73:839–41.
CAS
PubMed
Google Scholar
Rishikesh K, Saravu K. Primaquine treatment and relapse in Plasmodium vivax malaria. Pathog Glob Health. 2016;110:1–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pascual M, Cazelles B, Bouma MJ, Chaves LF, Koelle K. Shifting patterns: malaria dynamics and rainfall variability in an African highland. Proc Biol Sci. 2008;275:123–32.
Article
CAS
PubMed
Google Scholar
Chaves LF, Scott TW, Morrison AC, Takada T. Hot temperatures can force delayed mosquito outbreaks via sequential changes in Aedes aegypti demographic parameters in autocorrelated environments. Acta Trop. 2014;129:15–24.
Article
PubMed
Google Scholar
Nisbet RM, Gurney WSC. Population dynamics in a periodically varying environment. J Theor Biol. 1976;56:459–75.
Article
CAS
PubMed
Google Scholar
Shaman J, Day JF. Reproductive phase locking of mosquito populations in response to rainfall frequency. PLoS ONE. 2007;2:e331.
Article
PubMed
PubMed Central
Google Scholar
Chaves LF, Hashizume M, Satake A, Minakawa N. Regime shifts and heterogeneous trends in malaria time series from Western Kenya Highlands. Parasitology. 2012;139:14–25.
Article
PubMed
Google Scholar
Bouma MJ, Siraj A, Rodo X, Pascual M. El Niño-based malaria epidemic warning for Oromia, Ethiopia, from August 2016 to July 2017. Trop Med Int Health. 2016;21:1481–8.
Article
CAS
PubMed
Google Scholar
Bouma MJ, Poveda G, Rojas W, Chavasse D, Quiñones M, Cox J, Patz J. Predicting high-risk years for malaria in Colombia using parameters of El Niño Southern Oscillation. Trop Med Int Health. 1997;2:1122–7.
Article
CAS
PubMed
Google Scholar
Laguna F, Grillet ME, León JR, Ludeña C. Modelling malaria incidence by an autoregressive distributed lag model with spatial component. Spat Spatiotemporal Epidemiol. 2017;22:27–37.
Article
PubMed
Google Scholar
Grillet M-E, El Souki M, Laguna F, León JR. The periodicity of Plasmodium vivax and Plasmodium falciparum in Venezuela. Acta Trop. 2014;129:52–60.
Article
PubMed
Google Scholar
Rodríguez DJ, Delgado L, Ramos S, Weinberger V, Rangel Y. A model for the dynamics of malaria in Paria Peninsula, Sucre State, Venezuela. Ecol Model. 2013;259:1–9.
Article
Google Scholar
Chuang T-W, Soble A, Ntshalintshali N, Mkhonta N, Seyama E, Mthethwa S, et al. Assessment of climate-driven variations in malaria incidence in Swaziland: toward malaria elimination. Malar J. 2017;16:232.
Article
PubMed
PubMed Central
Google Scholar
Haque U, Hashizume M, Glass GE, Dewan AM, Overgaard HJ, Yamamoto T. The role of climate variability in the spread of malaria in Bangladeshi Highlands. PLoS ONE. 2010;5:e14341.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chaves LF, Chuang T-W, Sasa M, Gutiérrez JM. Snakebites are associated with poverty, weather fluctuations, and El Niño. Sci Adv. 2015;1:e1500249.
Article
PubMed
PubMed Central
Google Scholar
Yamada K, Valderrama A, Gottdenker N, Cerezo L, Minakawa N, Saldaña A, et al. Macroecological patterns of American Cutaneous Leishmaniasis transmission across the health areas of Panamá (1980–2012). Parasite Epidemiol Control. 2016;1:42–55.
Article
Google Scholar
Chaves LF, Pascual M. Climate cycles and forecasts of cutaneous leishmaniasis, a nonstationary vector-borne disease. PLoS Med. 2006;3:e295.
Article
PubMed
PubMed Central
Google Scholar
Olmedo BA. El Niño en Panamá (Metereología E-Dd). Ciudad de Panamá: ETESA; 2006. p. 10.
Google Scholar
Olmedo B. Estado actual de las condiciones del Océano Pacífico Y su posible evolución durante el año 2015–2016. Panamá: ETESA-Gerencia de Climatología; 2016. p. 9.
Google Scholar
Patz JA, Olson SH. Malaria risk and temperature: influences from global climate change and local land use practices. Proc Natl Acad Sci USA. 2006;103:5635–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stensgaard A-S, Vounatsou P, Onapa AW, Utzinger J, Pedersen EM, Kristensen TK, et al. Ecological drivers of Mansonella perstans infection in Uganda and patterns of co-endemicity with lymphatic filariasis and malaria. PLoS Negl Trop Dis. 2016;10:e0004319.
Article
PubMed
PubMed Central
Google Scholar
Rejmankova E, Roberts D, Harbach R, Pecor J, Peyton E, Manguin S, et al. Environmental and regional determinants of Anopheles (Diptera: Culicidae) larval distribution in Belize, Central America. Environ Entomol. 1993;22:978–92.
Article
Google Scholar
Rejmankova E, Savage H, Rodriguez M, Roberts D, Rejmanek M. Aquatic vegetation as a basis for classification of Anopheles albimanus Weideman (Diptera: Culicidae) larval habitats. Environ Entomol. 1992;21:598–603.
Article
Google Scholar
Rejmankova E, Savage HM, Rejmanek M, Arredondo-Jimenez JI, Roberts DR. Multivariate analysis of relationships between habitats, environmental factors and occurrence of Anopheline mosquito larvae Anopheles albimanus and A. pseudopunctipennis in Southern Chiapas, Mexico. J Appl Ecol. 1991;28:827–41.
Article
Google Scholar
Berti J, González J, Navarro-Bueno E, Zoppi E, Gordon E, Delgado L. Larval seasonality of the mosquito Anopheles aquasalis (Diptera: Culicidae) and other insects associated to its habitat in Sucre, Venezuela. Rev Biol Trop. 2010;58:777–87.
PubMed
Google Scholar
Berti J, Zimmerman R, Amarista J. Spatial and temporal distribution of anopheline larvae in two malarious areas in Sucre State, Venezuela. Mem Inst Oswaldo Cruz. 1993;88:353–62.
Article
CAS
PubMed
Google Scholar
Chaves LF, Satake A, Hashizume M, Minakawa N. Indian Ocean dipole and rainfall drive a Moran effect in East Africa malaria transmission. J Infect Dis. 2012;205:1885–91.
Article
PubMed
Google Scholar
Honjo K, Chaves LF, Satake A, Kaneko A, Minakawa N. When they don’t bite, we smell money: understanding malaria bednet misuse. Parasitology. 2013;140:580–6.
Article
PubMed
PubMed Central
Google Scholar
Wallace R, Chaves LF, Bergmann L, CfJ Ayres Lopes, Hogerwerf L, et al. Clear-cutting disease control: capital-led deforestation, public health austerity, and vector-borne infection. New York: Springer; 2018.
Google Scholar
Cáceres L, Rovira J, Torres R, García A, Calzada J, De La Cruz M. Caracterización de la transmisión de la malaria por Plasmodium vivax en la región fronteriza de Panamá con Costa Rica en el municipio de Barú, Panamá. Biomédica. 2012;32:557–69.
Article
PubMed
Google Scholar
Chaves LF, Moji K. Density dependence, landscape and weather impacts on aquatic Aedes japonicus japonicus (Diptera: Culicidae) abundance along an urban altitudinal gradient. J Med Entomol. 2018. https://doi.org/10.1093/jme/tjx200.
Google Scholar
Chaves LF. Globally invasive, withdrawing at home: Aedes albopictus and Aedes japonicus facing the rise of Aedes flavopictus. Int J Biometeorol. 2016;60:1727–38.
Article
PubMed
Google Scholar
Levins R. Toward an integrated epidemiology. Trends Ecol Evol. 1995;10:304.
Article
CAS
PubMed
Google Scholar
Data Sources & Accuracy for National Park Service Maps [https://www.nps.gov/hfc/carto/data-sources.cfm].