Duffy PE, Sahu T, Akue A, Milman N, Anderson C. Pre-erythrocytic malaria vaccines: identifying the targets. Expert Rev Vaccines. 2012;11:1261–80.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hill AVS. Pre-erythrocytic malaria vaccines: towards greater efficacy. Nat Rev Immunol. 2005;6:21.
Article
CAS
Google Scholar
Mikolajczak SA, Aly AS, Kappe SH. Preerythrocytic malaria vaccine development. Curr Opin Infect Dis. 2007;20:461–6.
Article
PubMed
CAS
Google Scholar
Steel RW, Kappe SH, Sack BK. An expanding toolkit for preclinical pre-erythrocytic malaria vaccine development: bridging traditional mouse malaria models and human trials. Future Microbiol. 2016;11:1563–79.
Article
PubMed
PubMed Central
CAS
Google Scholar
Agnandji ST, Fernandes JF, Bache EB, Ramharter M. Clinical development of RTS, S/AS malaria vaccine: a systematic review of clinical Phase I–III trials. Future Microbiol. 2015;10:1553–78.
Article
PubMed
CAS
Google Scholar
Kaslow DC, Biernaux S. RTS, S: toward a first landmark on the Malaria Vaccine Technology Roadmap. Vaccine. 2015;33:7425–32.
Article
PubMed
Google Scholar
Yadava A, Waters NC. Rationale for further development of a vaccine based on the circumsporozoite protein of Plasmodium vivax. PLoS Negl Trop Dis. 2017;11:e0005164.
Article
PubMed
PubMed Central
Google Scholar
Mueller I, Shakri AR, Chitnis CE. Development of vaccines for Plasmodium vivax malaria. Vaccine. 2015;33:7489–95.
Article
PubMed
CAS
Google Scholar
Coppi A, Pinzon-Ortiz C, Hutter C, Sinnis P. The Plasmodium circumsporozoite protein is proteolytically processed during cell invasion. J Exp Med. 2005;201:27–33.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kappe SH, Buscaglia CA, Nussenzweig V. Plasmodium sporozoite molecular cell biology. Annu Rev Cell Dev Biol. 2004;20:29–59.
Article
PubMed
CAS
Google Scholar
Ejigiri I, Sinnis P. Plasmodium sporozoite-host interactions from the dermis to the hepatocyte. Curr Opin Microbiol. 2009;12:401–7.
Article
PubMed
PubMed Central
Google Scholar
Sinnis P, Coppi A. A long and winding road: the Plasmodium sporozoite’s journey in the mammalian host. Parasitol Int. 2007;56:171–8.
Article
PubMed
PubMed Central
Google Scholar
Clemens J, Moorthy V. Implementation of RTS, S/AS01 malaria vaccine—the need for further evidence. N Engl J Med. 2016;374:2596–7.
Article
PubMed
Google Scholar
Long CA, Zavala F. Malaria vaccines and human immune responses. Curr Opin Microbiol. 2016;32:96–102.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hoffman SL, Vekemans J, Richie TL, Duffy PE. The march toward malaria vaccines. Vaccine. 2015;33(Suppl 4):D13–23.
Article
PubMed
PubMed Central
CAS
Google Scholar
Healer J, Cowman AF, Kaslow DC, Birkett AJ. Vaccines to accelerate malaria elimination and eventual eradication. Cold Spring Harb Perspect Med. 2017;7:a025627.
Article
PubMed
Google Scholar
Stanisic DI, McCarthy JS, Good MF. Controlled human malaria infection: applications, advances, and challenges. Infect Immun. 2018;86:e00479–517.
PubMed
CAS
Google Scholar
Bijker EM, Sauerwein RW, Bijker WE. Controlled human malaria infection trials: how tandems of trust and control construct scientific knowledge. Soc Stud Sci. 2016;46:56–86.
Article
PubMed
Google Scholar
Spring M, Polhemus M, Ockenhouse C. Controlled human malaria infection. J Infect Dis. 2014;209(Suppl 2):S40–5.
Article
PubMed
Google Scholar
Sauerwein RW, Roestenberg M, Moorthy VS. Experimental human challenge infections can accelerate clinical malaria vaccine development. Nat Rev Immunol. 2011;11:57–64.
Article
PubMed
CAS
Google Scholar
Payne RO, Griffin PM, McCarthy JS, Draper SJ. Plasmodium vivax controlled human malaria infection - Progress and prospects. Trends Parasitol. 2017;33:141–50.
Article
PubMed
PubMed Central
Google Scholar
Bennett JW, Yadava A, Tosh D, Sattabongkot J, Komisar J, Ware LA, et al. Phase 1/2a trial of Plasmodium vivax malaria vaccine candidate VMP001/AS01B in malaria-naive adults: safety, immunogenicity, and efficacy. PLoS Negl Trop Dis. 2016;10:e0004423.
Article
PubMed
PubMed Central
CAS
Google Scholar
Arevalo-Herrera M, Vasquez-Jimenez JM, Lopez-Perez M, Vallejo AF, Amado-Garavito AB, Cespedes N, et al. Protective efficacy of Plasmodium vivax radiation-attenuated sporozoites in Colombian volunteers: a randomized controlled trial. PLoS Negl Trop Dis. 2016;10:e0005070.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bennett JW, Pybus BS, Yadava A, Tosh D, Sousa JC, McCarthy WF, et al. Primaquine failure and cytochrome P-450 2D6 in Plasmodium vivax malaria. N Engl J Med. 2013;369:1381–2.
Article
PubMed
CAS
Google Scholar
Othman AS, Marin-Mogollon C, Salman AM, Franke-Fayard BM, Janse CJ, Khan SM. The use of transgenic parasites in malaria vaccine research. Expert Rev Vaccines. 2017;16:1–13.
Article
PubMed
CAS
Google Scholar
Lim CS, Tazi L, Ayala FJ. Plasmodium vivax: recent world expansion and genetic identity to Plasmodium simium. Proc Natl Acad Sci USA. 2005;102:15523–8.
Article
PubMed
CAS
Google Scholar
Salman AM, Montoya-Diaz E, West H, Lall A, Atcheson E, Lopez-Camacho C, et al. Rational development of a protective P. vivax vaccine evaluated with transgenic rodent parasite challenge models. Sci Rep. 2017;7:46482.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mizutani M, Fukumoto S, Soubeiga AP, Soga A, Iyori M, Yoshida S. Development of a Plasmodium berghei transgenic parasite expressing the full-length Plasmodium vivax circumsporozoite VK247 protein for testing vaccine efficacy in a murine model. Malar J. 2016;15:251.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ponnudurai T, Leeuwenberg AD, Meuwissen JH. Chloroquine sensitivity of isolates of Plasmodium falciparum adapted to in vitro culture. Trop Geogr Med. 1981;33:50–4.
PubMed
CAS
Google Scholar
Ponnudurai T, Lensen AH, Meis JF, Meuwissen JH. Synchronization of Plasmodium falciparum gametocytes using an automated suspension culture system. Parasitology. 1986;93(Pt 2):263–74.
Article
PubMed
Google Scholar
Janse CJ, Franke-Fayard B, Mair GR, Ramesar J, Thiel C, Engelmann S, et al. High efficiency transfection of Plasmodium berghei facilitates novel selection procedures. Mol Biochem Parasitol. 2006;145:60–70.
Article
PubMed
CAS
Google Scholar
Mogollon CM, van Pul FJ, Imai T, Ramesar J, Chevalley-Maurel S, de Roo GM, et al. Rapid generation of marker-free P. falciparum fluorescent reporter lines using modified CRISPR/Cas9 constructs and selection protocol. PLoS ONE. 2016;11:e0168362.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ghorbal M, Gorman M, Macpherson CR, Martins RM, Scherf A, Lopez-Rubio JJ. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nat Biotechnol. 2014;32:819–21.
Article
PubMed
CAS
Google Scholar
Janse CJ, Ramesar J, Waters AP. High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malaria parasite Plasmodium berghei. Nat Protoc. 2006;1:346–56.
Article
PubMed
CAS
Google Scholar
Adjalley SH, Lee MC, Fidock DA. A method for rapid genetic integration into Plasmodium falciparum utilizing mycobacteriophage Bxb1 integrase. Methods Mol Biol. 2010;634:87–100.
Article
PubMed
PubMed Central
CAS
Google Scholar
Maier AG, Braks JA, Waters AP, Cowman AF. Negative selection using yeast cytosine deaminase/uracil phosphoribosyl transferase in Plasmodium falciparum for targeted gene deletion by double crossover recombination. Mol Biochem Parasitol. 2006;150:118–21.
Article
PubMed
CAS
Google Scholar
Lim MY, LaMonte G, Lee MC, Reimer C, Tan BH, Corey V, et al. UDP-galactose and acetyl-CoA transporters as Plasmodium multidrug resistance genes. Nat Microbiol. 2016;1:16166.
Article
CAS
Google Scholar
Deitsch K, Driskill C, Wellems T. Transformation of malaria parasites by the spontaneous uptake and expression of DNA from human erythrocytes. Nucleic Acids Res. 2001;29:850–3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Maier AG, Rug M. In vitro culturing Plasmodium falciparum erythrocytic stages. Methods Mol Biol. 2013;923:3–15.
Article
PubMed
CAS
Google Scholar
Ponnudurai T, Lensen AH, Van Gemert GJ, Bensink MP, Bolmer M, Meuwissen JH. Infectivity of cultured Plasmodium falciparum gametocytes to mosquitoes. Parasitology. 1989;98(Pt 2):165–73.
Article
PubMed
Google Scholar
Ponnudurai T, van Gemert GJ, Bensink T, Lensen AH, Meuwissen JH. Transmission blockade of Plasmodium falciparum: its variability with gametocyte numbers and concentration of antibody. Trans R Soc Trop Med Hyg. 1987;81:491–3.
Article
PubMed
CAS
Google Scholar
Menard R, Sultan AA, Cortes C, Altszuler R, van Dijk MR, Janse CJ, et al. Circumsporozoite protein is required for development of malaria sporozoites in mosquitoes. Nature. 1997;385:336–40.
Article
PubMed
CAS
Google Scholar
Kocken CH, Ozwara H, van der Wel A, Beetsma AL, Mwenda JM, Thomas AW. Plasmodium knowlesi provides a rapid in vitro and in vivo transfection system that enables double-crossover gene knockout studies. Infect Immun. 2002;70:655–60.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tewari R, Rathore D, Crisanti A. Motility and infectivity of Plasmodium berghei sporozoites expressing avian Plasmodium gallinaceum circumsporozoite protein. Cell Microbiol. 2005;7:699–707.
Article
PubMed
CAS
Google Scholar
Thathy V, Fujioka H, Gantt S, Nussenzweig R, Nussenzweig V, Menard R. Levels of circumsporozoite protein in the Plasmodium oocyst determine sporozoite morphology. EMBO J. 2002;21:1586–96.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ferguson DJ, Balaban AE, Patzewitz EM, Wall RJ, Hopp CS, Poulin B, et al. The repeat region of the circumsporozoite protein is critical for sporozoite formation and maturation in Plasmodium. PLoS ONE. 2014;9:e113923.
Article
PubMed
PubMed Central
CAS
Google Scholar
Oyen D, Torres JL, Wille-Reece U, Ockenhouse CF, Emerling D, Glanville J, et al. Structural basis for antibody recognition of the NANP repeats in Plasmodium falciparum circumsporozoite protein. Proc Natl Acad Sci USA. 2017;114:E10438–45.
Article
PubMed
CAS
Google Scholar
Zeeshan M, Alam MT, Vinayak S, Bora H, Tyagi RK, Alam MS, et al. Genetic variation in the Plasmodium falciparum circumsporozoite protein in India and its relevance to RTS,S malaria vaccine. PLoS One. 2012;7:e43430.
Article
PubMed
PubMed Central
CAS
Google Scholar
de Souza-Neiras WC, de Melo LM, Machado RL. The genetic diversity of Plasmodium vivax—a review. Mem Inst Oswaldo Cruz. 2007;102:245–54.
Article
PubMed
Google Scholar
Wang Q, Fujioka H, Nussenzweig V. Mutational analysis of the GPI-anchor addition sequence from the circumsporozoite protein of Plasmodium. Cell Microbiol. 2005;7:1616–26.
Article
PubMed
CAS
Google Scholar
Hopp CS, Chiou K, Ragheb DR, Salman AM, Khan SM, Liu AJ, et al. Longitudinal analysis of Plasmodium sporozoite motility in the dermis reveals component of blood vessel recognition. Elife. 2015;4:e07789.
Article
PubMed Central
Google Scholar
Tewari R, Spaccapelo R, Bistoni F, Holder AA, Crisanti A. Function of region I and II adhesive motifs of Plasmodium falciparum circumsporozoite protein in sporozoite motility and infectivity. J Biol Chem. 2002;277:47613–8.
Article
PubMed
CAS
Google Scholar
Triller G, Scally SW, Costa G, Pissarev M, Kreschel C, Bosch A, et al. Natural parasite exposure induces protective human anti-malarial antibodies. Immunity. 2017;47:1197–209.
Article
PubMed
CAS
Google Scholar
Vijayan A, Mejias-Perez E, Espinosa DA, Raman SC, Sorzano COS, Zavala F, et al. A prime/boost PfCS14K(M)/MVA-sPfCS(M) vaccination protocol generates robust CD8(+) T Cell and antibody responses to Plasmodium falciparum circumsporozoite protein and protects mice against malaria. Clin Vaccine Immunol. 2017;24:e00494–516.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang M, Kaneko I, Tsao T, Mitchell R, Nardin EH, Iwanaga S, et al. A highly infectious Plasmodium yoelii parasite, bearing Plasmodium falciparum circumsporozoite protein. Malar J. 2016;15:201.
Article
PubMed
PubMed Central
CAS
Google Scholar
Aldrich C, Magini A, Emiliani C, Dottorini T, Bistoni F, Crisanti A, et al. Roles of the amino terminal region and repeat region of the Plasmodium berghei circumsporozoite protein in parasite infectivity. PLoS One. 2012;7:e32524.
Article
PubMed
PubMed Central
CAS
Google Scholar