Druilhe P, Sabchareon A, Bouharoun-Tayoun H, Oeuvray C, Perignon JL: In vivo veritas: lessons from immunoglobulin-transfer experiments in malaria patients. Ann Trop Med Parasitol. 1997, 91 (Supp): 37-53.
Article
Google Scholar
Bouharoun-Tayoun H, Attanath P, Sabchareon A, Chongsuphajaisiddhi T, Druilhe P: Antibodies that protect humans against Plasmodium falciparum blood stages do not on their own inhibit parasite growth and invasion in vitro, but act in cooperation with monocytes. J Exp Med. 1990, 172: 1633-1641.
Article
CAS
PubMed
Google Scholar
Roussilhon C, Oeuvray C, Muller-Graf C, Tall A, Rogier C, Trape JF, Theisen M, Balde A, Perignon JL, Druilhe P: Long-term clinical protection from falciparum malaria is strongly associated with IgG3 antibodies to merozoite surface protein 3. PLoS Med. 2007, 4: e320-
Article
PubMed Central
PubMed
Google Scholar
Bouharoun-Tayoun H, Druilhe P: Plasmodium falciparum malaria: evidence for an isotype imbalance which may be responsible for delayed acquisition of protective immunity. Infect Immun. 1992, 60: 1473-1481.
PubMed Central
CAS
PubMed
Google Scholar
Bouharoun-Tayoun H, Oeuvray C, Lunel F, Druilhe P: Mechanisms underlying the monocyte-mediated antibody-dependent killing of Plasmodium falciparum asexual blood stages. J Exp Med. 1995, 182: 409-418.
Article
CAS
PubMed
Google Scholar
Jafarshad A, Dziegiel MH, Lundquist R, Nielsen LK, Singh S, Druilhe PL: A novel antibody-dependent cellular cytotoxicity mechanism involved in defense against malaria requires costimulation of monocytes FcgammaRII and FcgammaRIII. J Immunol. 2007, 178: 3099-3106.
Article
CAS
PubMed
Google Scholar
Shi YP, Udhayakumar V, Oloo AJ, Nahlen BL, Lal AA: Differential effect and interaction of monocytes, hyperimmune sera, and immunoglobulin G on the growth of asexual stage Plasmodium falciparum parasites. AmJTrop Med Hyg. 1999, 60: 135-141.
CAS
Google Scholar
Oeuvray C, Bouharoun-Tayoun H, Gras-Masse H, Bottius E, Kaidoh T, Aikawa M, Filgueira MC, Tartar A, Druilhe P: Merozoite surface protein-3: a malaria protein inducing antibodies that promote Plasmodium falciparum killing by cooperation with blood monocytes. Blood. 1994, 84: 1594-1602.
CAS
PubMed
Google Scholar
Theisen M, Soe S, Oeuvray C, Thomas AW, Vuust J, Danielsen S, Jepsen S, Druilhe P: The glutamate-rich protein (GLURP) of Plasmodium falciparum is a target for antibody-dependent monocyte-mediated inhibition of parasite growth in vitro. Infect Immun. 1998, 66: 11-17.
PubMed Central
CAS
PubMed
Google Scholar
Druilhe P, Spertini F, Soesoe D, Corradin G, Mejia P, Singh S, Audran R, Bouzidi A, Oeuvray C, Roussilhon C: A malaria vaccine that elicits in humans antibodies able to kill Plasmodium falciparum. PLoS Med. 2005, 2: e344-
Article
PubMed Central
PubMed
Google Scholar
Hermsen CC, Verhage DF, Telgt DS, Teelen K, Bousema JT, Roestenberg M, Bolad A, Berzins K, Corradin G, Leroy O, Theisen M, Sauerwein RW: Glutamate-rich protein (GLURP) induces antibodies that inhibit in vitro growth of Plasmodium falciparum in a phase 1 malaria vaccine trial. Vaccine. 2007, 25: 2930-2940.
Article
CAS
PubMed
Google Scholar
Belard S, Issifou S, Hounkpatin AB, Schaumburg F, Ngoa UA, Esen M, Fendel R, de Salazar PM, Murbeth RE, Milligan P, Imbault N, Imoukhuede EB, Theisen M, Jepsen S, Noor RA, Okech B, Kremsner PG, Mordmuller B: A randomized controlled phase Ib trial of the malaria vaccine candidate GMZ2 in African children. PLoS One. 2011, 6: e22525-
Article
PubMed Central
CAS
PubMed
Google Scholar
Esen M, Kremsner PG, Schleucher R, Gassler M, Imoukhuede EB, Imbault N, Leroy O, Jepsen S, Knudsen BW, Schumm M, Knobloch J, Theisen M, Mordmuller B: Safety and immunogenicity of GMZ2 - a MSP3-GLURP fusion protein malaria vaccine candidate. Vaccine. 2009, 27: 6862-6868.
Article
CAS
PubMed
Google Scholar
Mordmuller B, Szywon K, Greutelaers B, Esen M, Mewono L, Treut C, Murbeth RE, Chilengi R, Noor R, Kilama WL, Imoukhuede EB, Imbault N, Leroy O, Theisen M, Jepsen S, Milligan P, Fendel R, Kremsner PG, Issifou S: Safety and immunogenicity of the malaria vaccine candidate GMZ2 in malaria-exposed, adult individuals from Lambarene, Gabon. Vaccine. 2010, 28: 6698-6703.
Article
PubMed Central
PubMed
Google Scholar
Theisen M, Soe S, Brunstedt K, Follmann F, Bredmose L, Israelsen H, Madsen SM, Druilhe P: A Plasmodium falciparum GLURP-MSP3 chimeric protein; expression in Lactococcus lactis, immunogenicity and induction of biologically active antibodies. Vaccine. 2004, 22: 1188-1198.
Article
CAS
PubMed
Google Scholar
Desjardins RE, Canfield CJ, Haynes JD, Chulay JD: Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother. 1979, 16: 710-718.
Article
PubMed Central
CAS
PubMed
Google Scholar
Makler MT, Hinrichs DJ: Measurement of the lactate dehydrogenase activity of Plasmodium falciparum as an assessment of parasitemia. AmJTrop Med Hyg. 1993, 48: 205-210.
CAS
Google Scholar
Maguire JD, Lederman ER, Barcus MJ, O'Meara WA, Jordon RG, Duong S, Muth S, Sismadi P, Bangs MJ, Prescott WR, Baird JK, Wongsrichanalai C: Production and validation of durable, high quality standardized malaria microscopy slides for teaching, testing and quality assurance during an era of declining diagnostic proficiency. Malar J. 2006, 5: 92-
Article
PubMed Central
PubMed
Google Scholar
Fleischer B: Editorial: 100 years ago: Giemsa's solution for staining of plasmodia. Trop Med Int Health. 2004, 9: 755-756.
Article
PubMed
Google Scholar
Milne LM, Kyi MS, Chiodini PL, Warhurst DC: Accuracy of routine laboratory diagnosis of malaria in the United Kingdom. J Clin Pathol. 1994, 47: 740-742.
Article
PubMed Central
CAS
PubMed
Google Scholar
van Vianen PH, Thaithong S, Reinders PP, van Engen A, van der Keur M, Tanke HJ, van der Kaay HJ, Mons B: Automated flow cytometric analysis of drug susceptibility of malaria parasites. AmJTrop Med Hyg. 1990, 43: 602-607.
CAS
Google Scholar
Izumiyama S, Omura M, Takasaki T, Ohmae H, Asahi H: Plasmodium falciparum: development and validation of a measure of intraerythrocytic growth using SYBR Green I in a flow cytometer. Exp Parasitol. 2009, 121: 144-150.
Article
CAS
PubMed
Google Scholar
Bei AK, Desimone TM, Badiane AS, Ahouidi AD, Dieye T, Ndiaye D, Sarr O, Ndir O, Mboup S, Duraisingh MT: A flow cytometry-based assay for measuring invasion of red blood cells by Plasmodium falciparum. Am J Hematol. 2010, 85: 234-237.
Article
PubMed Central
PubMed
Google Scholar
Theron M, Hesketh RL, Subramanian S, Rayner JC: An adaptable two-color flow cytometric assay to quantitate the invasion of erythrocytes by Plasmodium falciparum parasites. Cytometry A. 2010, 77: 1067-1074.
Article
PubMed
Google Scholar
Makler MT, Lee LG, Recktenwald D: Thiazole orange: a new dye for Plasmodium species analysis. Cytometry. 1987, 8: 568-570.
Article
CAS
PubMed
Google Scholar
Whaun JM, Rittershaus C, Ip SH: Rapid identification and detection of parasitized human red cells by automated flow cytometry. Cytometry. 1983, 4: 117-122.
Article
CAS
PubMed
Google Scholar
Staalsoe T, Giha HA, Dodoo D, Theander TG, Hviid L: Detection of antibodies to variant antigens on Plasmodium falciparum-infected erythrocytes by flow cytometry. Cytometry. 1999, 35: 329-336.
Article
CAS
PubMed
Google Scholar
van der Heyde HC, Elloso MM, vande Waa J, Schell K, Weidanz WP: Use of hydroethidine and flow cytometry to assess the effects of leukocytes on the malarial parasite Plasmodium falciparum. Clin Diagn Lab Immunol. 1995, 2: 417-425.
PubMed Central
CAS
PubMed
Google Scholar
Jouin H, Daher W, Khalife J, Ricard I, Puijalon OM, Capron M, Dive D: Double staining of Plasmodium falciparum nucleic acids with hydroethidine and thiazole orange for cell cycle stage analysis by flow cytometry. Cytometry A. 2004, 57: 34-38.
Article
PubMed
Google Scholar
Jimenez-Diaz MB, Mulet T, Gomez V, Viera S, Alvarez A, Garuti H, Vazquez Y, Fernandez A, Ibanez J, Jimenez M, Gargallo-Viola D, Angulo-Barturen I: Quantitative measurement of Plasmodium-infected erythrocytes in murine models of malaria by flow cytometry using bidimensional assessment of SYTO-16 fluorescence. Cytometry A. 2009, 75: 225-235.
Article
PubMed
Google Scholar
Pattanapanyasat K, Yongvanitchit K, Heppner DG, Tongtawe P, Kyle DE, Webster HK: Culture of malaria parasites in two different red blood cell populations using biotin and flow cytometry. Cytometry. 1996, 25: 287-294.
Article
CAS
PubMed
Google Scholar
Chen LB: Mitochondrial membrane potential in living cells. Annu Rev Cell Biol. 1988, 4: 155-181.
Article
CAS
PubMed
Google Scholar
Smiley ST, Reers M, Mottola-Hartshorn C, Lin M, Chen A, Smith TW, Steele GD, Chen LB: Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc Natl Acad Sci U S A. 1991, 88: 3671-3675.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen LB: Fluorescent labeling of mitochondria. Methods Cell Biol. 1989, 29: 103-123.
Article
CAS
PubMed
Google Scholar
Modica-Napolitano JS, Weiss MJ, Chen LB, Aprille JR: Rhodamine 123 inhibits bioenergetic function in isolated rat liver mitochondria. Biochem Biophys Res Commun. 1984, 118: 717-723.
Article
CAS
PubMed
Google Scholar
Mai MS, Allison WS: Inhibition of an oligomycin-sensitive ATPase by cationic dyes, some of which are atypical uncouplers of intact mitochondria. Arch Biochem Biophys. 1983, 221: 467-476.
Article
CAS
PubMed
Google Scholar
Poot M, Zhang YZ, Kramer JA, Wells KS, Jones LJ, Hanzel DK, Lugade AG, Singer VL, Haugland RP: Analysis of mitochondrial morphology and function with novel fixable fluorescent stains. J Histochem Cytochem. 1996, 44: 1363-1372.
Article
CAS
PubMed
Google Scholar
Pendergrass W, Wolf N, Poot M: Efficacy of MitoTracker Green and CMXrosamine to measure changes in mitochondrial membrane potentials in living cells and tissues. Cytometry A. 2004, 61: 162-169.
Article
CAS
PubMed
Google Scholar
Shi YP, Nahlen BL, Kariuki S, Urdahl KB, McElroy PD, Roberts JM, Lal AA: Fcgamma receptor IIa (CD32) polymorphism is associated with protection of infants against high-density Plasmodium falciparum infection. VII. Asembo Bay Cohort Project. J Infect Dis. 2001, 184: 107-111.
Article
CAS
PubMed
Google Scholar
Pratt-Riccio LR, Bianco C, Totino PR, Perce-Da-Silva Dde S, Silva LA, Riccio EK, Ennes-Vidal V, Neves-Ferreira AG, Perales J, Da Rocha SL, Dias-Da-Silva F, Ferreira-da-Cruz MF, Daniel-Ribeiro CT, De Oliveira-Ferreira J, Theisen M, Carvalho LJ, Banic DM: Antibodies against the Plasmodium falciparum glutamate-rich protein from naturally exposed individuals living in a Brazilian malaria-endemic area can inhibit in vitro parasite growth. Mem Inst Oswaldo Cruz. 2011, 106 (Suppl 1): 34-43.
Article
CAS
PubMed
Google Scholar
Trager W, Jensen JB: Human malaria parasites in continuous culture. Science. 1976, 193: 673-675.
Article
CAS
PubMed
Google Scholar
Lambros C, Vanderberg JP: Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979, 65: 418-420.
Article
CAS
PubMed
Google Scholar
Jensen JB: Concentration from continuous culture of erythrocytes infected with trophozoites and schizonts of Plasmodium falciparum. AmJTrop Med Hyg. 1978, 27: 1274-1276.
CAS
Google Scholar
Arnot DE, Ronander E, Bengtsson DC: The progression of the intra-erythrocytic cell cycle of Plasmodium falciparum and the role of the centriolar plaques in asynchronous mitotic division during schizogony. Int J Parasitol. 2011, 41: 71-80.
Article
CAS
PubMed
Google Scholar
Lousada-Dietrich S, Jogdand PS, Jepsen S, Pinto VV, Ditlev SB, Christiansen M, Larsen SO, Fox CB, Raman VS, Howard RF, Vedvick TS, Ireton G, Carter D, Reed SG, Theisen M: A synthetic TLR4 agonist formulated in an emulsion enhances humoral and Type 1 cellular immune responses against GMZ2–a GLURP-MSP3 fusion protein malaria vaccine candidate. Vaccine. 2011, 29: 3284-3292.
Article
CAS
PubMed
Google Scholar
Biggar RJ, Christiansen M, Rostgaard K, Smedby KE, Adami HO, Glimelius B, Hjalgrim H, Melbye M: Immunoglobulin subclass levels in patients with non-Hodgkin lymphoma. Int J Cancer. 2009, 124: 2616-2620.
Article
CAS
PubMed
Google Scholar
Tebo AE, Kremsner PG, Luty AJ: Plasmodium falciparum: a major role for IgG3 in antibody-dependent monocyte-mediated cellular inhibition of parasite growth in vitro. Exp Parasitol. 2001, 98: 20-28.
Article
CAS
PubMed
Google Scholar
Theisen M, Soe S, Jessing S, Okkels L, Danielsen S, Oeuvray C, Druilhe P, Jepsen S: Identification of a major linear B cell epitope of the Plasmodium falciparum Glutamate-rich protein (GLURP), targeted by human antibodies mediating parasite killing. Vaccine. 2000, 19: 204-212.
Article
CAS
PubMed
Google Scholar
Clark IA, Budd AC, Alleva LM, Cowden WB: Human malarial disease: a consequence of inflammatory cytokine release. Malar J. 2006, 5: 85-
Article
PubMed Central
PubMed
Google Scholar
Santos L, Draves KE, Boton M, Grewal PK, Marth JD, Clark EA: Dendritic cell-dependent inhibition of B cell proliferation requires CD22. J Immunol. 2008, 180: 4561-4569.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ch'ng JH, Kotturi SR, Chong AG, Lear MJ, Tan KS: A programmed cell death pathway in the malaria parasite Plasmodium falciparum has general features of mammalian apoptosis but is mediated by clan CA cysteine proteases. Cell Death Dis. 2010, 1: e26-
Article
PubMed Central
PubMed
Google Scholar
Srivastava IK, Rottenberg H, Vaidya AB: Atovaquone, a broad spectrum antiparasitic drug, collapses mitochondrial membrane potential in a malarial parasite. J Biol Chem. 1997, 272: 3961-3966.
Article
CAS
PubMed
Google Scholar
Srivastava IK, Vaidya AB: A mechanism for the synergistic antimalarial action of atovaquone and proguanil. Antimicrob Agents Chemother. 1999, 43: 1334-1339.
PubMed Central
CAS
PubMed
Google Scholar