WHO. World malaria report 2019. Geneva, World Health Organization, 2019.
Takala-Harrison S, Laufer MK. Antimalarial drug resistance in Africa: key lessons for the future. Ann N Y Acad Sci. 2015;1342:62–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amor A, Toro C, Fernandez-Martinez A, Baquero M, Benito A, Berzosa P. Molecular markers in Plasmodium falciparum linked to resistance to anti-malarial drugs in samples imported from Africa over an eight-year period (2002–2010): impact of the introduction of artemisinin combination therapy. Malar J. 2012;11:100.
Article
PubMed
PubMed Central
Google Scholar
Ouji M, Augereau J-M, Paloque L, Benoit-Vical F. Plasmodium falciparum resistance to artemisinin-based combination therapies: a sword of Damocles in the path toward malaria elimination. Parasite. 2018;25:24.
Article
PubMed
PubMed Central
Google Scholar
Miraclin TA, Matthew A, Rupali P. Decreased response to artemisinin combination therapy in falciparum malaria: a preliminary report from South India. Trop Parasitol. 2016;6:85–6.
Article
PubMed
PubMed Central
Google Scholar
Antony HA, Parija SC. Antimalarial drug resistance: an overview. Trop Parasitol. 2016;6:30–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uwimana A, Umulisa N, Venkatesan M, Svigel SS, Zhou Z, Munyaneza T, et al. Association of Plasmodium falciparum kelch13 R561H genotypes with delayed parasite clearance in Rwanda: an open-label, single-arm, multicentre, therapeutic efficacy study. Lancet Infect Dis. 2021;21:1120–8.
Article
CAS
PubMed
Google Scholar
Balikagala B, Fukuda N, Ikeda M, Katuro OT, Tachibana SI, Yamauchi M, et al. Evidence of artemisinin-resistant malaria in Africa. N Engl J Med. 2021;385:1163–71.
Article
CAS
PubMed
Google Scholar
Lubell Y, Dondorp A, Guérin P, Drake T, Meek S, Ashley E, et al. Artemisinin resistance–modelling the potential human and economic costs. Malar J. 2014;13:452.
Article
PubMed
PubMed Central
Google Scholar
Conrad MD, Rosenthal PJ. Antimalarial drug resistance in Africa: the calm before the storm? Lancet Infect Dis. 2019;19:e338–51.
Article
CAS
PubMed
Google Scholar
White NJ. Antimalarial drug resistance. J Clin Invest. 2004;113:1084–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gatton ML, Martin LB, Cheng Q. Evolution of resistance to sulfadoxine-pyrimethamine in Plasmodium falciparum. Antimicrob Agent Chemother. 2004;48:2116–23.
Article
CAS
Google Scholar
Fairhurst RM, Dondorp AM. Artemisinin-resistant Plasmodium falciparum malaria. Microbiol Spectr. 2016;4(10):1128.
Google Scholar
Acharya P, Garg M, Kumar P, Munjal A, Raja KD. Host–parasite interactions in human malaria: clinical implications of basic research. Front Microbiol. 2017;8:889.
Article
PubMed
PubMed Central
Google Scholar
Clayton AM, Dong Y, Dimopoulos G. The Anopheles innate immune system in the defense against malaria infection. J Innate Immun. 2014;6:169–81.
Article
CAS
PubMed
Google Scholar
Luckhart S, Pakpour N, Giulivi C. Host–pathogen interactions in malaria: cross-kingdom signaling and mitochondrial regulation. Curr Opin Immunol. 2015;36:73–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Su XZ, Zhang C, Joy DA. Host-malaria parasite interactions and impacts on mutual evolution. Front Cell Infect Microbiol. 2020;10:587933.
Ramaprasad A, Pain A, Ravasi T. Defining the protein interaction network of human malaria parasite Plasmodium falciparum. Genomics. 2012;99:69–75.
Article
CAS
PubMed
Google Scholar
Agamah FE, Mazandu GK, Hassan R, Bope CD, Thomford NE, Ghansah A, et al. Computational/in silico methods in drug target and lead prediction. Brief Bioinform. 2020;21:1663–75.
Article
PubMed
Google Scholar
Zuck M, Austin LS, Danziger SA, Aitchison JD, Kaushansky A. The promise of systems biology approaches for revealing host pathogen interactions in malaria. Front Microbiol. 2017;8:2183.
Article
PubMed
PubMed Central
Google Scholar
Network MGE. Insights into malaria susceptibility using genome-wide data on 17,000 individuals from Africa. Asia and Oceania Nat Commun. 2019;10:5732.
Article
CAS
Google Scholar
Smigielski EM, Sirokin K, Ward M, Sherry ST. dbSNP: a database of single nucleotide polymorphisms. Nucleic Acids Res. 2000;28:352–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sherry ST, Ward M, Kholodov M, Baker J, Phan L, Smigielski EM, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29:308–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
UniProt Consortium. The Universal Protein Resource (UniProt) in 2010. Nucleic Acids Res. 2010;38(Database issue):D142–8.
Mazandu GK, Mulder NJ. Scoring protein relationships in functional interaction networks predicted from sequence data. PLoS One. 2011;6:e18607.
Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, et al. InterPro: the integrative protein signature database. Nucleic Acids Res. 2009;37(Database issue):D211–5.
Croft D, O'Kelly G, Wu G, Haw R, Gillespie M, Matthews L, et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res. 2011;39(Database issue):D691–7.
Kerrien S, Aranda B, Breuza L, Bridge A, Broaches-Carter F, Chen C, et al. The IntAct molecular interaction database in 2012. Nucleic Acids Res. 2012;40(Database issue):D841-6.
Licata L, Briganti L, Peluso D, Perfetto L, Iannucelli M, Galeota E, et al. MINT, the molecular interaction database: 2012 update. Nucleic Acids Res. 2012;40(Database issue):D857–61.
Chatr-Aryamontri A, Oughtred R, Boucher L, Rust J, Chang C, Kolas NK, et al. The BioGRID interaction database: 2017 update. Nucleic Acids Res. 2017;45(Database issue):D369–79.
Wuchty S, Ipsaro JJ. A draft of protein interactions in the malaria parasite P. falciparum. J Proteome Res. 2007;6:1461–70.
Wuchty S. Topology and weights in a protein domain interaction network–a novel way to predict protein interactions. BMC Genomics. 2006;7:122.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wuchty S. Rich-club phenomenon in the interactome of P. falciparum--artifact or signature of a parasitic life style? PLoS One. 2007;2:e335.
Wuchty S, Adams JH, Ferdig MT. A comprehensive Plasmodium falciparum protein interaction map reveals a distinct architecture of a core interactome. Proteomics. 2009;9:1841–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
LaCount DJ, Vignali M, Chettier R, Phansalkar A, Bell R, Hesselberth JR, et al. A protein interaction network of the malaria parasite Plasmodium falciparum. Nature. 2005;438:103–7.
Article
CAS
PubMed
Google Scholar
Bossi A, Lehner B. Tissue specificity and the human protein interaction network. Mol Syst Biol. 2009;5:260.
Article
PubMed
PubMed Central
Google Scholar
Mazandu GK, Mulder NJ. Generation and analysis of large-scale data-driven Mycobacterium tuberculosis functional networks for drug target identification. Adv Bioinformatics. 2011;2011:801478.
Mulder NJ, Akinola RO, Mazandu GK, Rapanoel H. Using biological networks to improve our understanding of infectious diseases. Comput Struct Biotechnol J. 2014;11:1–10.
Article
PubMed
PubMed Central
Google Scholar
Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech. 2008;10:P10008.
Article
Google Scholar
Emmons S, Kobourov S, Gallant M, Börner K. Analysis of network clustering algorithms and cluster quality metrics at scale. PLoS One. 2016;11:e0159161.
Waltman L, Van Eck NJ. A smart local moving algorithm for large-scale modularity-based community detection. Eur Phys J B. 2013;86:471.
Article
CAS
Google Scholar
Rosvall M, Bergstrom CT. Maps of random walks on complex networks reveal community structure. Proc Natl Acad Sci USA. 2008;105:1118–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raghavan UN, Albert R, Kumara S. Near linear time algorithm to detect community structures in large-scale networks. Phys Rev E Stat. 2007;76:036106.
Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, et al. The Gene Ontology (GO) database and informatics resource. Nucleaic Acids Res. 2004;32(Database issue):D258–61.
Aurrecoechea C, Brestelli J, Brunck BP, Dommer J, Fischer S, Garija B, et al. PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res. 2009;37(Database issue):D539–43.
Aoki KF, Kanehisa M. Using the KEGG database resource. Curr Protoc Bioinformatics. 2005;Chapt 1:Unit 1.12.
McDonald JH. Handbook of biological statistics. Vol. 2. 2009: Sparky House Publishing, Baltimore, MD.
Kibbe, W.A., et al., Disease Ontology 2015 update: an expanded and updated database of human diseases for linking biomedical knowledge through disease data. Nucleic Acids Res. 2015;43((Database issue):D1071–8.
Mathur S, Dinakarpandian D. Finding disease similarity based on implicit semantic similarity. J Biomed Inform. 2012;45:363–71.
Article
PubMed
Google Scholar
Gazzinelli RT, Kalantari P, Fitzgerald KS, Golenbock DT. Innate sensing of malaria parasites. Nat Rev Immunol. 2014;14:744–57.
Article
CAS
PubMed
Google Scholar
Bengtsson A, Joergensen L, Rask TS, Olsen RW, Andersen MA, Turner L, et al. A novel domain cassette identifies Plasmodium falciparum PfEMP1 proteins binding ICAM-1 and is a target of cross-reactive, adhesion-inhibitory antibodies. J Immunol. 2013;190:240–9.
Article
CAS
PubMed
Google Scholar
Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006;34(Database issue):D668–72.
Fox CS. Using human genetics to drive drug discovery: a perspective. Am J Kidney Dis. 2019;74:111–9.
Article
CAS
PubMed
Google Scholar
Chen Y, Xu R. Network-based gene prediction for Plasmodium falciparum malaria towards genetics-based drug discovery. BMC Genomics. 2015;16(Suppl 7):S9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hua S. Targeting sites of inflammation: intercellular adhesion molecule-1 as a target for novel inflammatory therapies. Front Pharmacol. 2013;4:127.
PubMed
PubMed Central
Google Scholar
Rives AW, Galitski T. Modular organization of cellular networks. Proc Natl Acad Sci USA. 2003;100:1128–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen LC, Yeh HY, Yeh CY, Arias CR, Soo VW. Identifying co-targets to fight drug resistance based on a random walk model. BMC Syst Biol. 2012;6:5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Belachew EB. Immune response and evasion mechanisms of Plasmodium falciparum parasites. J Immunol Res. 2018;2018:6529681.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gowda D, Wu X. Parasite recognition and signaling mechanisms in innate immune responses to malaria. Front Immunol. 2018;9:3006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clark IA, Alleva LM, Mills AC, Cowden WB. Pathogenesis of malaria and clinically similar conditions. Clin Microbiol Rev. 2004;17:509–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murphy SC, Breman JG. Gaps in the childhood malaria burden in Africa: cerebral malaria, neurological sequelae, anemia, respiratory distress, hypoglycemia, and complications of pregnancy. Am J Trop Med Hyg. 2001;64(1_suppl):57–67.
Briglia M, Fazio A, Faggio C, Laufer S, Alzoubi K, Lang F. Triggering of suicidal erythrocyte death by ruxolitinib. Cell Physiol Biochem. 2015;37:768–78.
Article
CAS
PubMed
Google Scholar
Francischetti IM, Seydel KB, Monteiro RQ. Blood coagulation, inflammation, and malaria. Microcirculation. 2008;15:81–107.
Article
CAS
PubMed
PubMed Central
Google Scholar
Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, et al., UniProt: the Universal Protein knowledgebase. Nucleic Acids Res. 2004;32(Database issue):D115–9.
Ponts N, Yang J, Chung DK, Prudhomme J, Girke T, Horrocks P, et al. Deciphering the ubiquitin-mediated pathway in apicomplexan parasites: a potential strategy to interfere with parasite virulence. PLoS One. 2008;3:e2386.
Hamilton MJ, Lee M, Le Roch KG. The ubiquitin system: an essential component to unlocking the secrets of malaria parasite biology. Mol Biosyst. 2014;10:715–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Villard V, Agak GW, Frank G, Jafarshad A, Servis C, Nébié I, et al. Rapid identification of malaria vaccine candidates based on alpha-helical coiled coil protein motif. PLoS One. 2007;2:e645.
Aminake MN, Arndt HD, Pradel G. The proteasome of malaria parasites: a multi-stage drug target for chemotherapeutic intervention? Int J Parasitol Drugs Drug Resist. 2012;2:1–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharma M, Dhiman C, Dangi P, Singh S. Designing synthetic drugs against Plasmodium falciparum: a computational study of histone-lysine N-methyltransferase (PfHKMT). Syst Synth Biol. 2014;8:155–60.
Article
PubMed
PubMed Central
Google Scholar
Doug Chung D-W, Le Roch KG. Targeting the Plasmodium ubiquitin/proteasome system with anti-malarial compounds: promises for the future. Infect Disord Drug Targets. 2010;10:158–64.
Article
Google Scholar
Cui L, Fan Q, Cui L, Miao J. Histone lysine methyltransferases and demethylases in Plasmodium falciparum. Int J Parasitol. 2008;38:1083–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaur I, Zeeshan M, Saini E, Kaushik A, Mohmmed A, Gupta D, et al. Widespread occurrence of lysine methylation in Plasmodium falciparum proteins at asexual blood stages. Sci Rep. 2016;6:35432.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang L, Mu J, Zhang Q, Ni T, Srinivasan P, Ryavara K, et al. PfSETvs methylation of histone H3K36 represses virulence genes in Plasmodium falciparum. Nature. 2013;499:223–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dunst J, Kamena F, Matuschewski K. Cytokines and chemokines in cerebral malaria pathogenesis. Front Cell Microbiol. 2017;7:324.
Article
CAS
Google Scholar
Kumar R, Ng S, Engwerda C. The role of IL-10 in malaria: a double edged sword. Front Immunol. 2019;10:229.
Article
CAS
PubMed
PubMed Central
Google Scholar
Franklin BS, Ishizaka ST, Lamphier M, Gusovsky F, Hansen H, Rose J, et al. Therapeutical targeting of nucleic acid-sensing Toll-like receptors prevents experimental cerebral malaria. Proc Natl Acad Sci USA. 2011;108:3689–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Varo R, Crowley VM, Sitoe A, Madrid L, Serguides L, Kain KC, et al. Adjunctive therapy for severe malaria: a review and critical appraisal. Malar J. 2018;17:47.
Article
PubMed
PubMed Central
Google Scholar
Mazandu GK, Chimusa ER, Rutherford K, Zekeng EG, Gebremariam ZZ, Onifade MY, et al. Large-scale data-driven integrative framework for extracting essential targets and processes from disease-associated gene data sets. Brief Bioinform. 2018;19:1141–52.
CAS
PubMed
Google Scholar
Tripathi AK, Sha W, Shulaev V, Stins MF, Sullivan DJ. Plasmodium falciparum-infected erythrocytes induce NF-kappa B regulated inflammatory pathways in human cerebral endothelium. Blood. 2009;114:4243–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lyke KE, Fernández-Vina MS, Cao K, Hollenbach J, Coulibaly D, Kone AK, et al. Association of HLA alleles with Plasmodium falciparum severity in Malian children. Tissue Antigens. 2011;77:562–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo HT, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21:677–87.
Article
PubMed
PubMed Central
CAS
Google Scholar
Oyegue-Liabagui SL, Bouopda-Tuedom AG, Kouna LC, Maghendji-Nzondo S, Nzoughe H, Tchitoula-Makaya N, et al. Pro- and anti-inflammatory cytokines in children with malaria in Franceville. Gabon Am J Clin Exp Immunol. 2017;6:9–20.
PubMed
Google Scholar
Krishnegowda G, Hajjar AM, Zhu J, Douglass EJ, Uematsu S, Akira S, et al. Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity. J Biol Chem. 2005;280:8606–16.
Article
CAS
PubMed
Google Scholar
Greene JA, Moormann AM, Vulule J, Bocharie MJ, Zimmerman PA, Kazura JW. Toll-like receptor polymorphisms in malaria-endemic populations. Malar J. 2009;8:50.
Article
PubMed
PubMed Central
CAS
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
Article
CAS
PubMed
Google Scholar
von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 2003;31:258–61.
Article
CAS
Google Scholar